
EUROGRAPHICS 2004 / M. Alexa and E. Galin Short Presentations

Frontier Sets: A Partitioning Scheme to Enable Scalable
Virtual Environments

A. Steed and C. Angus

Department of Computer Science, University College London, Gower St, London, WC1E 6BT, United Kingdom

Abstract

We present a new spatial partitioning scheme called frontier sets. Frontier sets build on the notion of a potentially
visible set (PVS) [ARB90, TS91]. In a PVS a world is sub-divided into cells and for each cell all the other cells
that can be seen are computed. Frontier sets represents regions of mutual invisibility. One frontier in a frontier
set considers pairs of cells, A and B. It lists two sets of cells, FAB and FBA. From no cell in FAB is any cell in FBA
visible and vice-versa.
We have used frontier sets to investigate peer-to-peer networking schemes for networked virtual environments.
Preliminary investigation of simulations within the Quake II game engine shows that frontiers have significant
promise and may allow a new class of scalable peer-to-peer game infrastructures to emerge.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Multi-user online simulations and games pose a number of
challenges to systems designers [SZ99]. One challenge is
that of scaling the system to large numbers of users. Two
problems are key: the simulation or game mechanics may
require computation of Ω(N2) in the number of participants;
and maintaining the game state potentially involves Ω(N2)
remote interactions across a network. Simulations of more
than a few tens of participants have usually required dedi-
cated networks and assumptions about resource availability
and interaction capabilities of the simulation client. Alterna-
tively they have had to limit the interactivity of the simula-
tion or use a non-real time simulation.

One strategy that is often used to increase the number of
participants are area of interest management schemes that
attempt to identify users that do not need to communicate
[MBD00]. A common strategy is to allocate each participant
to one of a set of pre-determined regions of space and then
only enable communication between participants who share
the same region.

A computer graphics technique that is related to this prob-
lem is visibility culling [CCSD03]. One technique that is of-
ten used in networked games is potentially visible sets (PVS)

[ARB90, TS91]. A PVS can be used to exclude a pair of
entities from consideration for simulation purposes because
they are not mutually visible [Fun95]. However this visi-
bility must be evaluated every time the entities concerned
move.

In this paper we introduce a new data structure called a
frontier set. Frontier sets take a PVS structure and generate
a new structure that allows pairs of entities to negotiate a
criterion that either can test very rapidly to ensure that no
interaction is necessary between them.

In Section 2 we introduce the frontier sets data structure
and give examples of how frontiers can be used. In Section
3 we give a simple method for building frontiers. In Section
4 we then describe how we have applied frontier sets to the
game Quake II [Id 97]. We then conclude and describe po-
tential avenues for further research.

2. Frontier Sets

2.1. Potentially Visible Sets

A PVS exploits the fact that in many virtual environments,
from a specific point of view much, if not most, of the rest
of the environment may be occluded [ARB90, TS91]. If the

c© The Eurographics Association 2004.



A. Steed & C. Angus / Frontier Sets

environment is divided in to regions of space (or cells) then
for any cell, it will be possible to identify openings (or por-
tals) through which other cells can be seen. For any cell, it is
possible to explicitly compute which other cells are visible
from that cell, because if a cell is visible then there must be
a line of sight through all the portals between them. Figure 1
shows a simple example of a world comprised of cells and
the PVS of one of the cells.

Figure 1: An example of a potentially visible set. From cell
A, only cells B, C and E are visible.

The calculation of a PVS can be done automatically or by
hand for smaller models. For the purposes of this paper we
assume that a PVS already exists. We will also assume that
the PVS is symmetric; that is, if cell A can see cell B, cell
B can see cell A. Assymetries can be dealt with by minor
extensions to the algorithms we will describe.

2.2. Frontier Definition

PVSs are typically based on a cell-based sub-division of the
world. A frontier is a pair of sets of cells that are mutually
invisible. We can find a frontier given two cells A and B. The
frontier will be two regions FAB and FBA such that no cell in
FAB is visible to a cell in FBA and vice-versa. FAB∩FBA = ∅,
otherwise any cell in the intersection must be visible from
both FAB and FBA.

We will use the term frontiers to refer to a pair of such
sets, or to only one of the sets when the meaning is clear. The
complete set of frontiers for a whole world will be referred
to as a frontier set.

There are potentially many frontiers for a pair of cells. No
frontier will exist between two cells if the two cells are visi-
ble to each other. If B is not in the PVS of A, then frontiers
can be initialized with FAB = A,FBA = B. In Figure 2a we
see the frontiers for two cells A, I. No frontier would exist
between cells D and H because they are mutually visible.

2.3. Example Usage

Consider two users moving around the environment depicted
in Figure 2a. If Anne is in cell A and Bob is in cell I at time
t0 then a frontier can be established. FAI = A,B,C,F,FIA =
G,H, I as shown in Figure 2a. If Anne remains in FAI and
Bob remains in FIA then they can never see each other. If

this were a networked virtual environment this would mean
that if Anne and Bob both exchanged location information
at t0 they would not have to send any further updates.

a) b)

c) d)

Figure 2: An example of frontiers in use. a) Users Anne
and Bob are in cells A, I respectively. A frontier exists
FAI = {A,B,C,F},FIA = {G,H, I}. b) A frontier exists
FEH = {A,B,C,E,F},FHE = {H, I}. c) No frontier exists
because cell D can see cell H. d) A frontier exists FDI =
{A,B,C,D,E,F} and FID = {I}.

If either Anne or Bob leaves their frontier, then one of two
situations arises: either a new frontier can be set up between
the two cells Anne and Bob are currently in, or they can
see each other. In Figure 2b, at time t1, Anne leaves the FAI
established at t0 and enters cell E. At this time Bob is in
cell H. There is a new frontier FEH = {A,B,C,E,F},FHE =
{H, I}.

At time t2, Figure 2c, Anne moves to cell D. There is no
frontier between cells D and H because the cells are mutually
visible. At time t3, Figure 2d, Bob moves to cell I. A frontier
can be established FDI = {A,B,C,D,E,F} and FID = {I}.

Pseudo-code for an algorithm to implement this within
a networked simulation is given in Figure 3. A client calls
SendNetworkUpdate each frame. Independently of this, they
can receive an update from the network which triggers Re-
ceiveNetworkUpdate. The main job of SendNetworkUpdate
is to establish if, since the last frame, this client or the other
client have left the agreed frontier. If they have, they get rid
of the current frontier. If there is no current frontier then it
sends an update to the other client. Finally it tries to estab-
lish a new frontier with the current cells for this client and
the other client.

3. Creating Frontier Sets

There are many different potential ways of constructing
frontiers. In this section we give a simple algorithm that at-
tempts to grow regions that are balanced in size and as large
as possible. In our scenario the best frontiers will be those

c© The Eurographics Association 2004.



A. Steed & C. Angus / Frontier Sets

AttemptEstablishFrontierWithOther(cellThis, cellOther)
/* frontiers[x][y] is the set Fxy and vice versa. */
IF frontiers[cellThis][cellOther] �= ∅ {

frontierThis = frontiers[cellThis][cellOther]
frontierOther = frontiers[cellOther][cellThis]

}
}
ReceiveNetworkUpdate() {

cellOther = GetOtherParticipantCurrentCell()
}
SendNetworkUpdate() {

cellThis = GetCurrentCell()
/* If we or other have moved out of frontier,

remove it. */
IF (cellThis ∈ frontierThis) OR

(cellOther ∈ frontierOther)
frontierThis = frontierOther = ∅

/* If no current frontier, send a packet and try to
establish one. */

IF frontierThis = ∅ {
SendNetworkUpdateToOther()
AttemptEstablishFrontierWithOther(cellThis, cellOther)

}
}

Figure 3: Pseudo-code for the use of frontiers to limit packet
update information for two moving participants.

that will be expected to last as long as possible when used to
cull packets on the network.

Figure 4 gives pseudo code for the region growing ap-
proach to the creation of frontiers. It is based on a standard
cells and portals data structure. Cells are linked in an adja-
cency graph, with cells being nodes and portals being the
links between nodes. If the PVS is symmetric, to add a cell
C to a frontier FAB, C must not be visible to any cell in FBA.
Likewise, a cell C can only be added to FBA if it is not visible
to any cell in FAB. Key to this is maintaining an aggregate
PVS of a set of cells. As a cell is added to a frontier, the
PVS of the frontier is merged with the PVS of the cell being
added.

The algorithm alternately adds a cell to FAB and FBA. It
proceeds by following the adjacency graph in a breadth first
manner from A and B. Figure 5 shows how this works for
the creation of the frontiers given in the example from Fig-
ure 2. The final frontiers are FAI = {A,B,C,F} and FIA =
{G,H, I}.

4. Testing Frontiers in QuakeII

To test the frontier concept we have implemented a sim-
ulation of frontiers within the game QuakeII [Id 97]. This
platform was chosen because it is a very popular exam-
ple of an online, fast-paced action game, and also because
the source code is available under the GNU Public License.

GenerateFrontiers(cells) {
FOR EACH PAIR (a, b) FROM cells {

frontierA = frontierB = ∅
/* A frontier can only be set up if a and b

cannot see each other. */
IF b ∈ PVS(a) {

frontierA = {a}; frontierB = {b}
pvsFrontierA = PVS(a); pvsFrontierB = PVS(b)
/* GetLeaves() returns all cells adjacent to x. */
growA = a.GetLeaves(); growB = b.GetLeaves()
WHILE NOT (growA.Empty() AND

growB.Empty()) {
IF NOT growA.Empty() {

nextCell = growA.Pop()
IF nextCell � pvsFrontierB) {

frontierA = frontierA ∪ nextCell
pvsFrontierA = pvsFrontierA ∪ PVS(nextCell)
FOR EACH c ∈ nextCell.GetLeaves()

IF (c � frontierA) AND (c � growA)
growA.Push(c)

}
IF NOT growB.Empty()

/* Repeat block above, swapping A and B. */
}
frontiers[a][b] = frontierA; frontiers[b][a] = frontierB

}
}

}

Figure 4: Pseudo-code for the construction of frontiers with
symmetric PVS.

Quake II uses a client-server model for distributing game
state amongst the players.

Each game level within the Quake II game has a PVS.
This is primarily for speeding up rendering, though in in
multi-user games it is also used at the server to cull pack-
ets that do not need to be relayed to a client because that
client can not see the entity concerned.

Typical game levels in Quake II have between 1000 and
3000 cells. In our initial tests we have pre-computed the
complete frontier set. Because this requires O(N3) space in
the number of cells (i.e. for each pair of cells, we classify all
cells into in one half of the frontier or in neither), we first
compress the PVS using the scheme of [vdPS99]. We find
that by reducing typical game levels to just 256 cells we do
not lose much of the visibility information.

Figure 6 shows an example frontier pair. We can use fron-
tiers as the basis of a peer-to-peer networking scheme as
suggested in Section 2.3. A peer-to-peer scheme is desir-
able because it is lower latency than a client-server system.
A perfect peer-to-peer scheme would only send information
between two players if and only if they could see each other.
Of course, such a scheme is impossible to implement be-
cause one must know whether the other user is to know not

c© The Eurographics Association 2004.



A. Steed & C. Angus / Frontier Sets

a) b) c)

d) e) f)

g) h) i)

Figure 5: An example creation of a frontier. Solid coloring
shows the frontiers and hatching the corresponding PVS. a)
Since A and I are not visible to each other, FAI and FIA can
be initialized with A and I respectively. PVS FAI is set to PVS
A, PVS FIA is set to PVS I. b) We add B to FAI because B is
not in PVS FIA. We add D and F to PVS FAI. c) We extend
FIA with cell H. d) We extend FAI with C. e) We add G to FIA
. f) We attempt to extend FAI with E, but can not because it is
in PVS FIA. g) Likewise we cannot add cell D to FIA. h) We
add cell F to FAI . i) The final frontiers.

Figure 6: Example of the use of frontiers in the Quake II
level q2dm4. The players represented by red and green dots
started in the bright red and green cells. As long as they stay
in the dark red and dark green regions they do not need to
communicate.

to send a packet. Frontiers allow us to use a peer-to-peer
scheme and still retain scalability.

We recorded several QuakeII game sessions with an av-
erage of 16 users online. In simulations of peer-to-peer net-
working schemes on one session on the QuakeII game level
q2dm4, we found that a frontier-based system would require
each client to send 3.1 packets per client per game frame
on average, whereas a perfect peer-to-peer system sent 2.8
packets per client per game frame. This is compared with
15.6 for a naive peer-to-peer scheme where each user sends
to every other user. Surprisingly frontiers were also more ef-
ficient than a simple client-server scheme without packet ag-
gregation at the server which produced 3.8 packets per client
per frame.

5. Conclusions

We have introduced frontier sets, a new data structure that
represents mutually invisible regions of space. We have
shown a simple algorithm for constructing frontiers and how
these frontiers can be used to enable scalability in peer-to-
peer networking systems. We have then given some brief
analysis of frontiers using data from QuakeII sessions.

Our immediate work is in implementing a peer-to-peer
system on the frontier algorithm. There are also several ex-
tensions that can be made to the processes for construction
of frontiers. We note that we have tried to make the frontiers
as large as possible, but simpler descriptions might require
less storage space. We also note that we have described fron-
tiers for every pair of cells, but the frontiers themselves will
be highly compressible because if a cell C is in a frontier
FAB, then it is likely that cell A would be in FCB.

References

[ARB90] AIREY E. J. M., ROHLF J. H., BROOKS JR. F.:
Towards image realism with interactive update
rates in complex virtual building environments.
Computer Graphics 24, 2 (1990), 41–50. (Proc.
ACM Symposium on Interactive 3D Graphics).

[CCSD03] COHEN-OR D., CHRYSANTHOU Y., SILVA C.,
DURANT F.: Survey of visibility for walk-
through applications. IEEE Transactions on Vi-
sualization and Computer Graphics 9, 3 (2003),
412–431.

[Fun95] FUNKHOUSER T. A.: Ring: A client-server sys-
tem for multi-user virtual environments. In 1995
Symposium on Interactive 3D Graphics (Apr.
1995), pp. 85–92.

[Id 97] ID SOFTWARE: Quake II, 1997.
www.idsoftware.com/games/quake/quake2/.

[MBD00] MORSE K. L., BIC L., DILLENCOURT M.: In-
terest management in large-scale virtual envi-
ronments. Presence: Teleoperators and Virtual
Environments 9, 1 (2000), 52–68.

[SZ99] SINGHAL S., ZYDA M.: Networked Vir-
tual Environments: Design and Implementation.
Addison-Wesley, 1999.

[TS91] TELLER S. J., SEQUIN C. H.: Visibility pre-
processing for interactive walkthroughs. Com-
puter Graphics 25, 4 (1991), 61–90. (Proc. SIG-
GRAPH 91).

[vdPS99] VAN DE PANNE M., STEWART A. J.: Effective
compression techniques for precomputed visi-
bility. In Proc. Eurographics Rendering Work-
shop (June 1999), pp. 305–316.

c© The Eurographics Association 2004.


