3DRepo4Unity: Dynamic Loading of Version Controlled 3D
Assets into the Unity Game Engine

Sebastian Friston® Carmen Fan Jozef Dobos
University College London 3D Repo Ltd 3D Repo Ltd
London, UK London, UK London, UK
Timothy Scully Anthony Steed
3D Repo Ltd University College London
London, UK London, UK

Figure 1: Test scene used in our measurements being dynamically loaded from a remote version controlled repository using a
newly developed 3DRepo4Unity library. The building consists of 13k components and 4m vertices. Model courtesy of Skanska.

ABSTRACT

In recent years, Unity has become a popular platform for the devel-
opment of a broad range of visualization and VR applications. This
is due to its ease of use, cross-platform compatibility and accessi-
bility to independent developers. Despite such applications being
cross-platform, their assets are generally bundled with executables,
or streamed at runtime in a highly optimised, proprietary format.
In this paper, we present a novel system for dynamically populating
a Unity environment at runtime using open Web3D standards. Our
system generates dynamic resources at runtime from a remote 3D
Repo repository. This enables us to build a viewer which can easily
visualize X3D-based revisions from a version controlled database
in the cloud without any compile-time knowledge of the assets. We
motivate the work and introduce the high-level architecture of our
solution. We describe our new dynamic transcoding library with an
emphasis on scalability and 3D rendering. We then perform a com-
parative evaluation between 3drepo.io, a state of the art X3DOM
based renderer, and the new 3DRepo4Unity library on web browser
platforms. Finally, we present a number of different applications
that demonstrate the practicality of our chosen approach. By build-
ing on previous Web3D functionality and standards, our hope is to

*sebastian.friston.12@ucl.ac.uk

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Web3D ’17, Brisbane, QLD, Australia

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4955-0/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3055624.3075941

stimulate further discussion around and research into web formats
that would enable incremental loading on other platforms.

CCS CONCEPTS
» Computing methodologies — Graphics file formats;

KEYWORDS
Unity, 3D assets, 3D Repo, MongoDB

ACM Reference format:

Sebastian Friston, Carmen Fan, Jozef Dobo§, Timothy Scully, and Anthony
Steed. 2017. 3DRepo4Unity: Dynamic Loading of Version Controlled 3D
Assets into the Unity Game Engine. In Proceedings of Web3D ’17, Brisbane,
QOLD, Australia, June 05-07, 2017, 9 pages.

DOIL: http://dx.doi.org/10.1145/3055624.3075941

1 INTRODUCTION

Currently, many virtual reality (VR) and visualization applications
are built on top of the Unity game engine. However, loading 3D
assets at runtime, especially over the Internet, remains a challenge.
Unlike dedicated WebGL-based environments on web browsers,
Unity does not support streaming of common interchange data
formats. Rather, streaming assets at runtime is supported through
AssetBundles!. This effectively defines an opaque, proprietary for-
mat to deliver the assets in. The time it takes to produce these asset
bundle files means in practice they must be pre-computed.

In the architecture, engineering and construction (AEC) indus-
try, frequent design changes, coordination meetings and important
presentations to non-experts are typical. Thus, quick and reliable
visualization of large, up-to-date 3D projects remains a challenge.

!https://docs.unity3d.com/Manual/AssetBundlesIntro.html

https://docs.unity3d.com/Manual/AssetBundlesIntro.html

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

Such issues are compounded by the fact that design teams—and
the 3D assets—are often distributed across different time zones,
organisations and platforms. To meet these challenges, some or-
ganisations have explored leveraging commercial game engines?.
These engines have been developed for many years, incorporating
lessons and features from many different projects. This is especially
true of Unity, which provides many beneficial features and opti-
mizations that are yet to appear in pure WebGL frameworks such as
Three.js (Cabello 2010), X3DOM (Behr et al. 2009) or XML3D (Sons
et al. 2010).

Due to its large user base and ease of deployment, e.g. support
for native distributions including custom drivers for non-consumer
hardware, Unity was chosen as our test-bed. Previously, Unity
supported browser-based applications through a dedicated plug-
in known as the Unity Web Player3. However, as of version 5.4,
Unity decommissioned its Web Player in favour of indirect compi-
lation into JavaScript assembly (Unity Technologies 2016b). This
facilitates a more seamless and user friendly experience when dis-
tributing Unity applications across the web. Due to the need for
cross-language compilation steps, not all system and processing
libraries are supported in WebGL.

Overall, our aim is to democratize the creation and deployment
of 3D visualizations for users who are skilled in 3D content gen-
eration, but who do not necessarily have the knowledge or time
to develop bespoke Unity applications. Such users not only in-
clude engineers working with Computer Aided Design (CAD) and
Building Information Modelling (BIM), but also independent game
developers and hobbyists alike. By delivering a web-enabled plat-
form, these professionals would be able to share their 3D scenes
with colleagues and collaborators without needing to transfer large
amounts of information in proprietary formats over traditional,
manually-intensive distribution channels, such as file-shares.

In this paper, we set out to design, develop and test a novel
way of populating a running Unity application with assets that are
dynamically loaded from a representational state transfer (REST)
application programming interface (API) over the Internet as shown
in Fig. 1. Then, we compare the loading performance with an ex-
isting visualization client based on declarative X3DOM using a set
of experimental measurements. Even if the Unity application is
compiled into a highly optimized version of JavaScript that should
outperform unoptimized X3DOM, Unity comes with many libraries
and additional processing overheads that may affect the loading
and display times of equivalent assets, as discussed in §8. Although
our current implementation is based on X3D scene descriptors, in
the future it can be easily expanded to support emerging formats
such as GL Transmission Format (gITF) (Khronos Group 2015) and
Draco (Google 2017).

Contributions. Our contributions can be summarized as follows:

(1) Design and implementation of a novel Web3D-based asset loader
on top of the Unity game engine.

(2) Evaluation and comparison of the asset loading speed between
3drepo.io and 3DRepo4Unity clients.

(3) Validation of the proposed solution in a real-world scenario.

http://www.aecmag.com/59-features/1166-virtual-reality-for-architecture\
-a-beginner-s-guide
3https://unity3d.com/webplayer

Friston et al.

2 RELATED WORK

Many systems support dynamic loading of web-based assets at
runtime. Early VR platforms such as Distributed Interactive Vir-
tual Environment (DIVE) (Carlsson and Hagsand 1993) and Model,
Architecture and System for Spatial Interaction in Virtual Environ-
ments (MASSIVE) (Greenhalgh and Benford 1995) delivered assets
online to support cooperation between geographically dispersed
users. However, they were based on decentralized peer-to-peer
connections.

VRML97 (Web3D Consortium 1997) and X3D (Web3D Consor-
tium 2013) specify sub-scenes with Uniform Resource Locators
(URLs), splitting data across multiple files. This reduces initializa-
tion time compared to hard-coding assets within the Hypertext
Mark-up Language (HTML) as done in early declarative 3D on the
web, c.f. (Behr et al. 2009; Sons et al. 2010). In such cases the entire
scene had to be downloaded and parsed first, blocking the main
GUI thread and causing the browser to become unresponsive.

With the introduction of WebGL, such problems inspired a prolif-
eration of 3D REST APIs and externalized file formats. For example,
AMD sponsored the rest3d initiative (Parisi and Arnaud 2011) that
proposed a unified REST interface for all 3D assets online. Schiefer
et al. (2010) introduced a REST service integration for OpenSG and
Dobos et al. (2013) defined a REST API for XML3D. Nevertheless,
large scenes still consist of hundreds of thousands of components.
Although web browsers can fetch multiple XMLHttpRequest (XHR)
requests in parallel, they only support several thousand at a time.
This led to the introduction of new file formats such Shape Resource
Container (SRC) (Limper et al. 2014) and Blast (Sutter et al. 2014). To
cope with large models, bounding interval hierarchies (BIH) were
utilized client-side for visibility culling (Stein et al. 2014) and Multi-
Part X3DOM nodes for mesh batching (Scully et al. 2015). Based on
such advances, (Mouton et al. 2014) demonstrated a scalable system
for model-driven web services architecture targeting CAD online.
Such efforts culminated in the introduction of gITF (Khronos Group
2015) with various extensions such as binary glTF (Cozzi et al. 2016)
for buffer views as well as streaming (Scully et al. 2016). Other
systems also interlinked various web assets, e.g. (Olbrich 2016) for
X3DOM, (Schilling et al. 2016) for CityGML streaming to Cesium]JS
and (Lu et al. 2016) for crowd-sourcing of city models.

In contrast, large-scale virtual worlds such as SecondLife (Ry-
maszewski 2007) and its open source C# derivative OpenSim host
multiple worlds in a grid composed of hyperlinked regions. This
is based around a custom-built protocol for dynamic exchange of
assets over the Internet. Since these predate the most recent Web3D
formats, they support mainly sculpted primitives and bitmaps, but
also COLLADA files. Similarly, Open Wonderland built in Java
provides a shared online 3D space where users interacted with dy-
namically loaded COLLADA files, as well as 2D windowing systems
including presentations and web browsers from within 3D space.

Recently, systems such as Google Earth VR and Autodesk Live
have begun to support rendering web-based 3D assets in VR. These
systems are proprietary and closed-source, though there are open
interoperability tools. For example RawKee is an open source add-in
to Autodesk Maya that exports character animation and scripting
into X3D.

http://www.aecmag.com/59-features/1166-virtual-reality-for-architecture\-a-beginner-s-guide
http://www.aecmag.com/59-features/1166-virtual-reality-for-architecture\-a-beginner-s-guide
https://unity3d.com/webplayer

3DRepo4Unity: Dynamic Loading of...

3 ARCHITECTURE OVERVIEW

Our solution is built on top of the Unity game engine. Leveraging
game engines allows developers to quickly get started on platforms
with all the basic features required to display a virtual world, mas-
sively reducing non-recurring engineering costs. Further, a team
will have access to the latest developments in computer graphics
that would be beyond the abilities or budget of a smaller group
working alone. Unity was chosen specifically because its licens-
ing model has no up-front costs, is a popular choice for lower-end
hardware, and its popularity provides ready access to a community.

However, the requirements overlap between video games and
construction visualization is not perfect. Developers leveraging
game engines must be prepared to work around design decisions
that in some cases are actively detrimental to visualization appli-
cations. For example, the assets forming a game world are mostly
static and highly constrained ahead of time. This allows the engine
to make pre-computations and assumptions for the sake of perfor-
mance. It also means support for loading arbitrary assets at runtime
is minimal, if it exists at all. This is true of Unity, which has an
additional complication in that its API is not thread-safe making
asynchronous loading extra challenging. Thus, the architecture of
the proposed solution consists of three independent systems: i) 3D
Repo version controlled Web3D repository, ii) Unity game engine,
and iii) 3DRepo4Unity stand-alone C# library.

3.1 3D Repo

3D Repo (Dobos and Steed 2012), a domain-specific open source
version control system, has evolved from an XML3D based (Sons
et al. 2010) visualization to a Angular]JS and X3DOM (Behr et al.
2009) based commercial platform, 3drepo.io (Scully et al. 2015). With
the advent of gITF, 3D Repo added experimental support for web-
based streaming and direct GPU memory manipulation (Scully et al.
2016) in JavaScript and WebGL. The core of the platform consists of
several interconnected systems. A C++ processing back-end loads,
decomposes and optimizes industrial 3D models. These are stored
in a polymorphic Binary JSON (BSON) collection within a NoSQL
database in 3D Repo’s internal scene graph format. This resides
alongside a revision history and various highly optimized Web3D
data representations. A Node.js web server provides dynamic web
pages and exposes a REST APIL The API can be queried for vari-
ous resources including user profiles, projects, histories, revisions,
scene graphs, externalized meshes & textures, etc., all in multiple
formats and encodings. Most of these are generated on demand,
depending on the requested data representation (XML, JSON, SRC,
gITF, etc.). However, such responses can be cached server-side.
This is typically beneficial as data storage is, in general, cheaper
than CPU processing time. Although 3D Repo does not provide
direct 3D editing functionality, users can upload revisions and post
comments within them. The comments themselves follow the BIM
Collaboration Format (BCF) standard (buildingSMART 2016) by
buildingSmart.

3.2 Unity

Unity is a well known game development framework. It consists
of a real-time rendering engine with support for systems such as
audio, physics simulation, user input and networking. Developers

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

build applications using the Unity Editor, in which they interact
directly with the Unity engine’s systems using a graphical user
interface (GUI), rather than building a scene graph in code. The
editor then builds distributables targeted at a number of platforms.
Unity itself is closed source, but its licensing is friendly to small and
medium enterprises (SMEs) as the revenue sharing model allows
full access to almost all its features with no upfront costs.

A Unity application is based around a scene graph, formed of
GameObjects. As explained in Section 3.2, all application function-
ality exists as an element of one or more GameObjects. The Editor
supports many common 3D interchange formats. However, these
are converted at design time to native types, before they can interop-
erate with Unity’s systems. Similarly, Unity supports optimizations
such as static batching, but this requires the assets and scene graph
to be defined at compile time. While it is possible to create native
resources at runtime, not all the importer functionality is present.

Programming paradigm. Unity utilizes the component based
model for engine design. It contains multiple systems, controlled by
attaching Components to objects in the scene graph. Components
are instances of managed classes that form the Unity API. For in-
stance, a Component may integrate with the rendering pipeline to
draw geometry or play audio. The engine does not have a compre-
hensive central static API. However, some low-level functionality
is accessible via specific interfaces. For example, it is possible to
make calls analogous to a subset of OpenGL that operate below the
rendering pipeline. Generally, each system is treated atomically and
as a black-box, with behaviours controlled through the managed
Components only.

Thus, a developer writes the behaviour of an application by creat-
ing their own Components. These are instances of Unity’s MonoBe-
haviour class, which is a generic base class capable of integrating
into the Unity scene graph on a GameObject. The class includes
methods to be overridden which are essentially callbacks. Within
these methods, the developer may interact with the programmatic
API of other Components, or execute any other code as desired.
Developers write these Script Components in C# or JavaScript, with
the Unity Editor automatically invoking the C# compiler and inte-
grating the binaries into an application with a common runtime.

3.3 3DRepo4Unity Library

While Unity does support runtime loading of assets, the implemen-
tation is not flexible enough for our requirements. The dedicated
APl is only designed to work with bundles of assets delivered in a
proprietary format (Unity Technologies 2016c). The importers for
typical interchange formats are only available within the editor, not
at runtime. For example, textures can be loaded from byte arrays
but meshes must be constructed manually.

Over time, 3D Repo has evolved to deliver scene content in X3D
supported formats, thus the new Unity based client must be able
to interpret the X3D scene description. Although Unity supports
modifying the scene graph dynamically, its programming model
is single threaded. Unity does have the concept of co-routines, but
these are designed to distribute execution of a single function call
across multiple frames, rather than multiple threads (Unity Tech-
nologies 2016a). Unlike heavily optimized game models, the envi-
ronments loaded by 3D Repo are large and unoptimized; with assets

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

delivered between potentially thousands of Hypertext Transfer Pro-
tocol (HTTP) API calls across a wide-area network with varying
latency. Hence, support for multi-threaded loading is necessary to
ensure the user interface remains responsive.

Responsibilities. In response to these challenges, we designed
our solution to be as decoupled from any Unity-specific design-
decisions and data types as possible. Furthermore, we aimed to
compartmentalise the main responsibilities to reduce friction during
future maintenance. These responsibilities are:

(1) API translation and abstraction of the server by the Web Client
(2) Multi-threaded scene data import by the Importer
(3) Application-agnostic scene representation with the Portable

Scene Graph
(4) Loading the scene data into Unity with an ISceneGraphTran-

slator implementation

We decided to build a .NET library, separate from Unity itself.
This allows the library to be reused outside of Unity in contexts
such as automated test suites, as well as in other applications.

The interface to Unity itself is deliberately kept narrow. The
library presents a C# API suitable for use by Unity Script Com-
ponents. The API consists of a set of methods presented by the

_3dRepoEngine object, and an internal scene graph. _3dRepoEngine’s

methods are high level, suitable for binding directly to a GUI per-
mitting a user to control the loading process. The library handles
all communication with the server by requesting and parsing scene
data into the internal platform agnostic scene graph. Through a
callback mechanism, Unity iteratively synchronizes this internal
graph with its own as explained in §6. The callback is made each
frame, during which any new data is incorporated into the native
Unity scene. The graph is designed to be as simple as possible so
that converting it to a native representation requires minimal over-
head and all application-specific code can remain within Unity. A
data flow diagram is shown in Fig. 2, showing how the solution’s
components can be grouped at a high level into each responsibility.

4 WEB CLIENT

The web client consists of RepoController and its dependencies,
as illustrated in Fig. 2. These classes together translate the 3D Repo
REST API into a C# API that is used throughout the remainder of
the solution. All interaction with the server takes place through a
RepoController instance. This in turn uses a number of resources
to exchange HTTP requests, maintain a session and a local cache.

RepoController is a wrapper around the 3D Repo REST APL
It emits HTTP requests based on method calls, and parses the
JavaScript Object Notation (JSON) responses into equivalent native
objects. That is, it is a managed wrapper around the API published
by 3D Repo. Higher-level functionality, such as navigation through
revisions, is performed by _3dRepoEngine using RepoController,
which is stateless.

The 3D Repo API uses cookies to maintain a session. These
are managed by HTTPClient. HTTPClient is what synthesizes the
HTTP requests and interoperates with the operating system’s net-
work stack. It has no application-specific functionality, other than
keeping the 3D Repo cookie. It was created only because the target
version of .NET did not have a sufficiently capable client built in.

Friston et al.

GUI ISceneGraphTranslator

A
Unity Application

Managed Library

\4
. Portable
R Engin
e Scene Graph
Public API A
\ 4
RepoController |——» Scene Importer
A
A A A
Resource
Stream
A |
' h;z);t:r:r Imsz(r:ter L)
URICache 8 P
)\ 4 A
HTTP Shared
Client Resource
v
3D Repo 1 ;
Server Web Client | Importer |

Figure 2: Simplified Data Flow Diagram of 3DRepo4Unity.

Resource Management. RepoController does not parse any data
that is not part of the 3D Repo REST API specification. All scene
data is passed as raw byte-streams to SceneImporter as Resource-
Streams. 3D Repo is designed to deliver scenes in X3D which is
effectively an Extensible Markup Language (XML) for describing
fully interactive 3D scenes. X3D uses Uniform Resource Identifiers
(URIs) to identify resources and sub-trees, and resources may be
shared between multiple nodes. To emulate the natural behaviour
of a web browser, HTTP requests are routed through an instance of
URICache to avoid downloading the same resources multiple times.
URICache caches server responses as instances of SharedResource.
SharedResource instances receive server responses, downloading
large assets on separate threads, and provide a thread-safe API to
the streams. ResourceStream instances wrap this API in a stream-
like object for use by native .NET classes. As the REST API is used to
make requests for changing data, such as revision and branch infor-
mation, RepoController only routes a subset of requests through
URICache.

High-level AP Unity interacts with the library by instantiating
_3dRepoEngine. _3dRepoEngine has methods for logging in and
out of the server, and requesting revisions. The intent is for these
methods to be high-level enough that they could be bound directly
to GUI controls and by keeping them separate from RepoController,
new conceptual uses of the API can be easily added to the en-
gine as it evolves. When a call to one of the high level meth-
ods is made, _3dRepoEngine will invoke the appropriate REST
calls in RepoController and route the responses to an instance of
ScenelImporter. SceneImporter will parse the responses, load the
scene data and deliver it to Unity as described in §5 and §6.

3DRepo4Unity: Dynamic Loading of...

5 PORTABLE SCENE GRAPH

Unity receives scene data through our portable scene graph, which
consists of a hierarchy of PortableSceneNodes. These nodes may
have geometry and materials attached to them, just like the native
Unity scene graph. The portable scene graph classes are highly rigid
and simplistic, encapsulating only the bare functionality used by 3D
Repo scenes. Members are strongly typed with implicit semantics to
make the conversion to native equivalents straightforward. These
types will change as 3D Repo evolves (see §6.1 and 6.2).

The portable scene graph addresses the challenges of asynchro-
nous loading in Unity. It is designed so that branches can be con-
structed in parallel and then merged together. Node methods are
inherently thread-safe, with each branch having a context object,
i.e. a mutex, that locks critical sections when a branch is updated.
The context object can also be used to lock the entire branch ex-
ternally, such as when single-threaded applications such as Unity
need to traverse the entire graph. When a branch is grafted onto
another, it adopts the parent’s context and from then on is seen as
one branch. This approach decouples the thread-management of
the scene graph from that of the scene importer, simplifying both.

Scene loader. When instructed by the host, _3dRepoEngine will
request the X3D scene for a revision by issuing the appropriate calls
to RepoController, in accordance with the published 3D Repo
API. 3D Repo delivers X3D with additional third-party formats
such as SRC (Limper et al. 2014), and typical image texture formats.
The raw response data is routed to the SceneImporter. This class
and its dependencies parse the raw data into portable representa-
tions of basic assets (geometry and textures) that can be loaded
into Unity, or any other real-time engine. Once the X3D scene is
parsed, SceneImporter traverses the generated scene Document
Object Model (DOM) and translates it into our portable scene graph.
New scene graph nodes are created as new X3D nodes are encoun-
tered, and the recursive traversal methods take instances of both
ensuring that nodes are added in the correct place. It is also in
SceneImporter where the semantics implied by an X3D type are
used to translate the scene elements into concrete types.

Multi-threaded support. The actual SceneImporter used by the
library is an asynchronous subclass. Simple conditionals decide
if a given DOM node should be imported in its own thread. For
example, Inline nodes, which contain sub-scenes, or nodes refer-
encing geometry, are imported in new threads. This is because
there may be a non-trivial delay while dependencies for a node are
downloaded, during which time other nodes could be processed. It
also allows for simultaneous downloads of resources, that further
reduces perceived latency. If an import is aborted or suffers an
error, the AsyncSceneImporter aborts its workers before destruc-
ting, and these aborts are propagated, recursively terminating all
threads until only the root remains. To retrieve the imported scene
data, the application needs to traverse the portable scene graph.
The mechanism to do so is for an application to provide a callback
in the form of an ISceneGraphTranslator instance (see §6). The
application assigns this as a member of the _3DRepoEngine, then
calls an update request method that blocks until pending updates to
main graph are made. The graph will not be locked while the geom-
etry is downloaded, since AsyncSceneImporter would construct

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

the nodes outside of the main graph and only then append them
once complete. When permissible, the update method locks the
graph and a method of the ISceneGraphTranslator interface is
called. This loads the changes in the graph into the host application.
The update request call is simply a helper method. It retrieves any
worker exceptions, the state of the import, and handles locking
of the graph. It directly calls the ISceneGraphTranslator update
method, however, and so both this and the update method execute
in the same thread. Finally, ISceneGraphTranslator is responsible
for translating portable scene graph into a native one.

6 UNITY IMPORT

As multiple AsyncSceneImporters run in parallel, and indepen-
dently download resources of varying sizes, the order in which
different branches of the DOM/scene are completed is arbitrary.
For example, a scene root node with of a set of Inline child nodes
could be traversed long before the nodes themselves complete in
separate threads, as they may have “heavy” geometry to download.
Thus, each AsyncSceneImporter builds a portable scene branch
independently. Once a DOM has been exhausted, the branch is
grafted into the main portable scene graph referenced by the initial
AsyncSceneImporter instance.

The instance of ISceneGraphTranslator is invoked by Unity
every frame through the update request method, which runs in the
main Unity thread. On each invocation, the update method traverses
the Unity scene graph and the portable scene graph in lock-step.
For each level of the graph, it attempts to match any portable
graph child nodes to existing Unity GameObjects, the native Unity
scene graph node type. The order of the child nodes may change
between the graphs, so matching is performed based on node names.
An alternative would be to give each Unity node a component
storing a unique identifier (UID). If a corresponding Unity node
cannot be found, a new one is created. Regardless of whether or
not matching nodes have been found, the traversal continues for all
their children. This is because new nodes may be added at any depth
and so the entire graph must be traversed to ensure all changes
are incorporated. To make this process more efficient, the portable
graph is furnished with flags allowing both individual nodes and the
graph as a whole to signal in what ways, if any, it has changed since
the last call. These are cleared by the ISceneGraphTranslator
implementation. It is within the ISceneGraphTranslator object
as well that native Unity Mesh and Material types are created and
added to the native scene. Nevertheless, it is important to note that
this lock-step traversal happens only while the assets are being
loaded over the Internet so it has zero effect on the rendering
performance thereafter.

6.1 Geometry Import

Although many X3D nodes describe visible geometry, 3D Repo
utilizes only the ExternalGeometry node, which references an SRC
mesh. This is mainly to avoid large amounts of data being stored
directly within the scene graph definition which would significantly
increase the perceived lag when parsing an X3DOM page. SRC
was designed for transmission of indexed face data, primarily as
a delivery rather than a data interchange format. It interoperates

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

closely with WebGL so that its data can be directly loaded onto the
graphics processing unit (GPU).

Despite the low-level arrangements of SRC being suitable for We-
bGL and OpenGL ES, it becomes more complex with Unity’s more
abstract API. While Unity does support runtime creation of meshes,
it constructs GPU buffers with different layouts based on the avail-
able vertex channels and shader capabilities. To import geometry,
ScenelImporter passes SRC formatted streams to the SRCImporter
which in turn parses them into an equivalent managed type. Then,
using the information in the SRC header, the interleaved mesh data
is extracted into individual but contiguous channels. Finally, the
semantic information from the header is used to assign these to
specific members of the portable mesh type.

3D Repo also utilises the X3DOM MultiPart (Scully et al. 2016)
node. Its purpose is to support submeshes as a form of mesh batch-
ing. In addition to the actual mesh data, defined by an ExternalGeo-
metry node or similar, an array is provided that assigns each primi-
tive to a particular submesh, and materials are assigned on a sub-
mesh basis. In the X3DOM runtime, these indices are used to lookup
material properties in the fragment shader. Unity has a native sup-
port for submeshes, so the mesh importer uses the array to group
indices into submeshes after the geometry has been transcoded. All
portable mesh nodes have at least one ‘submesh’, which contains
faces. If created within a MultiPart node, these are subsequently
split into a set of submeshes before the portable mesh is returned.

6.2 Material Import

X3D has a number of material definition options, including the
ability to specify arbitrary shaders. Again, we support only the
subset required by 3D Repo. 3D Repo uses the X3DMaterialNode
exclusively. This node explicitly defines a set of basic material
properties such as diffuse and emissive colors, and texture maps.
These properties are parsed directly into the portable material type
by SceneImporter. Within Unity, a small subset of shaders are
used for all materials, chosen depending on whether the material
should support features such as transparency or texture mapping.
All material node parameters have analogues in these shaders. Still,
translating materials between runtimes is typically a significant
challenge. Even when the same lighting models are used, there are
usually differences in the implementation. This is because individ-
ual parameters cannot be used directly and some sort of conversion
heuristic needs to be applied. The use cases of 3D Repo are typically
tolerant of simplistic materials and lighting however, making the
subset of properties used in 3DRepo4Unity tenable. Fortunately,
constraining the server to X3DMaterialNode makes material im-
port quite simple. The exception is the handling of textures. Though
URICache allows reuse of locally cached byte arrays, if these were
to be passed to an image parser multiple times, it would still result
in multiple copies of the same image in memory. Thus, we introduce
a TextureManager instance, which caches images based on URI in
SceneImporter. X3DMaterialNode is part of the X3D specification,
so unlike geometry, it is handled by the SceneImporter. By reusing
the same parsed image references, the ISceneGraphTranslator
can similarly reuse a dictionary of references to re-use the same
native images once loaded in Unity.

Friston et al.

Figure 3: 3D assets are dynamically loaded into a running
Unity application over the Internet. Upon loging in using
the same credentials as in 3drepo.io, the system lists all avail-
able projects (left) and enables the users to hot swap them
on the fly. Branches and revisions can be selected using drop
down menus (top middle).

7 USER INTERFACE AND DEPLOYMENT

Unity provides native support for building 2D GUIs. Widgets are
represented by GameObjects in the main Unity scene graph and
have components that interoperate with Unity’s systems to auto-
matically size and place themselves. Navigation throughout the
3D environment is done with traditional video game paradigms.
The 2D GUI in our case has the responsibilities of authentication
and settings management, as well as navigating a project’s revision
hierarchy. The GUI, shown in Fig. 3, mimics the 3D Repo browser-
based client. Unity has a component based programming model,
described in §3.2, so that various elements of the Unity application
are independent by nature. Yet, to make an intuitive UL a notion
of a state is required. For example, if the user is not logged in, no
other widgets should be visible. Thus we introduce UIManager as
a component which shows or hides individual aspects of the UI
depending on the state of the system, and the user’s preferences.

Environmental controls. 3D Repo revisions do not contain de-
tailed ambient environment geometry or lighting. Further, descrip-
tions of such environments are for now very application-specific.
For example, some runtimes may support a limited number of ba-
sic lights, while others use high-dynamic-range imaging (HDRI)
environment maps. Ambient environments, therefore, are handled
entirely on the Unity side. Its shader system supports environment
maps, basic lights, and a number of options for dynamic global
illumination. These can be specified dynamically, just like scene
geometry, so this functionality could be extended in the future.
Builds could also be made with customer-specific environments. A
number of basic environments are built into the solution. The revi-
sions do, however, support preconfigured viewpoints, and these are
represented within the portable scene graph. When encountered,
the scene translator will alter the camera transform to mirror them.

7.1 WebGL Compilation

Since Unity 5.4, the Webplayer has been phased out in favour of
native WebGL support. This is achieved by translating Unity game

3DRepo4Unity: Dynamic Loading of...

code into C++ using IL2CPP which is then further compiled into
JavaScript using emscripten (Unity Technologies 2016b). Whilst
creating a Unity WebGL build is as simple as changing the target
platform on the SDK, there are several limitations to consider.

Libraries support. Due to the restrictions of JavaScript and web
browsers, not all features supported within Unity are supported in
WebGL. For instance, some external JSON libraries and the .NET
XML Deserializer are not supported. However, the most critical
ones are System.Threading and System.Network. Due to the lack
of multi-threading, we can no longer support loading of scene data
in parallel. Nevertheless, some level of asynchonrous processing
can still be achieved due to reliance on JavaScript. In comparison
to a desktop version, the HTTP client also requires a full rewrite
to utilise UnityEngine WWW instead of System.Net. This maps
directly onto the XHR request with a JavaScript-like control flow
using UnityEngine.Coroutine and yield. Thus, scene fetching func-
tionality had to be adapted in a way where the work is only done
when the data has been yielded, using callback functions. Note
also that whilst C# supports function pointers originating from
instanced objects, WebGL supports only static functions, like native
C++. To further maintain a valid session, the application needs to
provide a session cookie with every request. Due to web browser
restrictions on the header, it is not possible to manually extract and
insert this cookie on a XHR request in a WebGL build. Credential
request withCredentials header is also not natively supported.
As of Unity 5.5, the only way to achieve this is to utilize a plug-in
script to add withCredentials into the header (Unity Technologies
2016d).

Memory allocation. Unity in WebGL manages its own memory
by requesting a block from the browser’s heap at the initialization
stage. This is known as the Unity Heap. There, it handles all memory
allocation inside the Unity Engine. The size of the heap is configured
at compile time, thus the Unity WebGL consumes a constant amount
of memory. To increase the memory usage, the build would have to
be recompiled, with a maximum allowed size of 2039MB. This has
proven to be a difficult restriction for our use case, as the sizes of
BIM models could be either too small or too big. A naive solution
would utilize the biggest possible memory buffer, meaning clients
with small models would still be consuming a large amount of
memory while large models could run out before being initialized.

8 EVALUATION AND DISCUSSION

Fig. 1 shows our 3DRepo4Unity library loading assets from a re-
mote location over time. The users are able to successfully log in,
maintain a session and retrieve any projects that are already stored
within the 3drepo.io web server as further shown in Fig. 3. To eval-
uate the usefulness of such an approach in day-to-day engineering,
we have developed a VR application on top of this library for the
purposes of health and safety induction (being demonstrated in
Fig. 4). Many commercial engines, including Unity, have inbuilt
support for popular VR headsets. This allows the same solution to
be used for navigation on desktops and in VR through configuration
of only a few settings. In our construction site office deployment,
the project delivery coordinators who are skilled in 4D planning

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

Figure 4: Health & safety induction using 3DRepo4Unity at
the M5 highway site office of Balfour Beatty and Vinci in the
UK. Project video available online at https://www.youtube.
com/watch?v=WGzwacVP66U

Figure 5: The same test 3D scene as shown in Fig. 1 visualized
in 3drepo.io based on X3DOM. For the purposes of our ex-
perimental evaluation, all user interface features have been
disabled to match the 3DRepo4Unity base performance.

using software packages such as Synchro and Autodesk Navis-
works were able to upload their custom site-specific 3D models
successfully, defining specific vantage points and exclusion zones
throughout the existing 3drepo.io web interface. These assets were
then loaded using the 3DRepo4Unity desktop VR application for
training purposes.

Experimental evaluation. To compare the loading speed and per-
formance of 3DRepo4Unity, we have performed an experimental
evaluation on a medium sized 3D model as shown in Fig. 5. As a
baseline, we used the existing 3drepo.io platform running X3DOM.
Against this, we compared the 3DRepo4Unity compiled in WebGL
mode as well as the off-the-shelf WebGL Unity with the model
delivered in native Asset Bundle data format. Median values from
five separate runs are reported in Fig. 6. These were calculated
to reduce the influence of outliers. Each timing consists of the re-
spective engine’s initialization time, fetching of the 3D assets, and
subsequent GPU loading via built-in timestamp printouts.

Unity has a longer initialization period as it requires the Engine
and Heap to initialize. Note that whilst the graph shows the Asset

https://www.youtube.com/watch?v=WGzwacVP66U
https://www.youtube.com/watch?v=WGzwacVP66U

Web3D 17, June 05-07, 2017, Brisbane, QLD, Australia

60

Time to screen (s)
(3% () = Wi
(=} (=3 (=} (=3

o

()__IIII

Chrome Firefox Chrome Firefox Chrome Firefox

X3DOM 3DRepo4Unity Asset Bundle

® Initialization Fetching GPU Loading

Figure 6: Median values over five runs of time to screen (in
seconds) between 3DRepo4Unity and Asset Bundle across
two popular web browsers. X3DOM timings act as baseline.

Bundle version taking longer to initialize than 3DRepo4Unity, the
Asset Bundle version was compiled without stripping the engine,
i.e. discarding libraries which are potentially not being utilized. The
libraries within the engine that are required for the Asset Bundles to
work are not known at compile time, thus if we were to strip down
the engine, it might be missing critical functionalities for them to
load correctly. This is something that can be improved upon in the
near future. Consequently, the size of the Asset Bundle engine is
significantly higher than that of 3DRepo4Unity. The 3D Model we
used in this experiment has a comparable size in X3D Format vs
Asset Bundle which uses LZ4 compression, thus we would envisage
the fetching period to be similar in our timings. However, it is
clear that 3DRepo4Unity, fetching the same files as X3DOM, took
significant longer to perform the XHR requests. It is unclear why the
difference exists especially without deeper understanding of how
Unity translates the application code into JavaScript. Nevertheless,
we suspect that one of the reasons may be due to the compiled code
not utilizing the asynchronous nature of JavaScript, unlike X3DOM.
Overall, our implementation is comparable in performance to the
native Asset Bundle support which in itself is a very positive result.
What is more, we found that Asset Bundles even on medium sized
construction models take a long time to generate. In the particular
case of building shown in Fig. 1, it has taken over five hours to
generate. Consequently, we do not consider the small run time
performance gain being worth the preprocessing requirements.

The results in Fig. 6 also show that X3DOM performs signifi-
cantly better than Unity on WebGL. X3DOM, being a polyfill WebGL
renderer, benefits from its ability to utilize the browsers’ parallel
loading functionality in full. What is more, it renders X3D natively,
whereas Unity has to transcode X3D or even its own Asset Bundles
into GameObjects at runtime, yielding a longer GPU propagation.
Requiring nearly one minute from pressing a button to seeing the
finished rendering on screen, such an approach would still need to
be optimized further to be truly usable in real world.

Finally, it is important to note that 3DRepo4Unity consumes dou-
ble the amount of memory in comparison to Asset Bundle version.
This is expected as the implementation we chose requires an extra
copy of the scene graph in the form of the PortableSceneGraph. As

Friston et al.

mentioned in §7.1, Unity WebGL builds are limited to 2GB of mem-
ory which severely limits the size of models that can be rendered
on the platform. Thus, in a commercial environment, we may have
to sacrifice interoperability for performance. However, we also no-
ticed that the Unity engine has good memory management; once
the scene is loaded onto the GPU, the CPU memory consumed in
generating the scene graph is garbage collected, allowing more CPU
memory to be used to perform other functionalities. In contrast,
X3DOM will permanently hold onto the CPU copy of the scene.

Advantages. In our implementation, the SRCImporter is separate
to the scene importer. This is because the SRC format is indepen-
dent of X3D, but also because it enables geometry importers to
be added and extended more easily, especially once 3D Repo fully
moves to another format such as glTF, c.f. (Scully et al. 2016). By
first transcoding geometry data to a more generic representation,
changes to the portable mesh type can be made more easily and
conversion to this type remains independent of a particular geome-
try parser which is a plus. Although our current implementation
supports only a small subset of the X3D specification, there is in
theory no reason why it would not be possible to extend the library
to support the entire X3D feature set. Special care would have to
be taken when accommodating embedded actions, animations and
scripts. This would enable designers and non-programmers to cre-
ate interactive 3D scenes using ready-made Web3D tools. It would
also provide greater interoperability with existing systems across
the Internet. Nevertheless, for our current requirements in the AEC
industry, our standard support for geometry, mesh batching and
textures is all that is required. What is more, the current Unity We-
bGL implementation does not support built-in XML parsers which
makes any X3D-based import functionality limited to non-browser
deployments only (see §7.1 for further details). With the advent
of gITF and its inclusion of a scene graph, it is also questionable
whether full support for X3D would be necessary. However, as it
stands, our 3DRepo4Unity library should be able to seamlessly load
most X3DOM-based assets on desktops.

Limitations. The main limitation of Unity on the web is the over-
head associated with initializing and running the required libraries
in a web browser. In comparison to direct WebGL implementations
of X3DOM, there is a significant delay when loading the assets
remotely as well as when uploading to the GPU. In addition, Unity
design decisions sometimes lead to conflicts between following the
highly compartmentalised paradigm and achieving optimal per-
formance. For example, to keep our solution flexible, the object
highlighting behaviour in the browser is implemented in Unity
as a second render pass using stencils, rather than a modification
to the shader itself (which would require modifying all shaders,
now and in the future). This decoupled design is in-keeping with
Unity’s programming model and is more flexible. For example, the
highlighting behaviour can be altered on a camera by camera basis,
by changing the attached component. This could be used to draw
different highlights in VR than on the desktop, or perhaps none at
all. With no dependencies in the primary materials and rendering
pipeline, it is easier to upgrade to the latest Unity materials, and
also integrate third-party extensions. However, it requires that the
geometry must be drawn twice. Given the sizes of many 3D Repo
revision scenes, this is not a trivial consideration.

3DRepo4Unity: Dynamic Loading of...

9 CONCLUSIONS

In this paper we have devised, implemented and tested a novel
method for dynamic loading of Web3D assets from a REST API over
the Internet into the Unity game engine at runtime. Although Unity
supports loading assets at runtime, our implementation is more
flexible, platform agnostic and can be extended to other engines.
This implementation was evaluated in an experiment whereby the
state-of-the-art X3DOM-based 3drepo.io client was compared and
contrasted with 3DRepo4Unity as well as native Asset Bundle im-
plementations using WebGL. This showed that our implementation
provides comparable performance while unleashing the power and
capabilities of a fully-fledged game engine on the web. Our hope is
that this and similar work will stimulate further development and
support for open Web3D standards in popular game engines soon.

Future work. Soon, we plan to expand our implementation with
support for glTF so that the 3D Repo SRC-based API can be phased
out. Then, we will attempt to add streaming and memory manage-
ment capabilities akin to (Scully et al. 2016) so that theoretically
unlimited virtual environments can be traversed in real-time over
the Internet despite limited server infrastructure. Furthermore, the
move towards physically based rendering (PBR) on the web will be
a significant benefit for the transfer of materials between runtimes,
as the scope for interpreting individual parameters in PBR is by
definition narrow. Unity has already moved their material system
to PBR, and common formats for their material descriptions are
already proposed for the web, c.f. (Sturm et al. 2016).

ACKNOWLEDGMENTS

This project has been funded by Innovate UK under the Infrastruc-
ture Systems grant No. 102813 for which we are grateful. 3D Repo
open source initiative has been also kindly supported by EIT Digital
and Digital Catapult in the UK.

REFERENCES

Johannes Behr, Peter Eschler, Yvonne Jung, and Michael Zéllner. 2009. X3DOM: A
DOM-based HTML5/X3D Integration Model. In Proceedings of the 14th International
Conference on 3D Web Technology (Web3D "09). ACM, New York, NY, USA, 127-135.
DOI : https://doi.org/10.1145/1559764.1559784

buildingSMART. 2016. Web service specification for BIM Collaboration Format. (Janu-
ary 2016). https://github.com/BuildingSMART/BCF-APIL

Ricardo Cabello. 2010. Three.js JavaScript 3D library. (2010).
https://github.com/mrdoob/three.js/.

C. Carlsson and O. Hagsand. 1993. DIVE A Multi-user Virtual Reality System. In
Proceedings of the 1993 IEEE Virtual Reality Annual International Symposium (VRAIS
’93). IEEE Computer Society, Washington, DC, USA, 394-400. DOI :https://doi.org/
10.1109/VRAIS.1993.380753

Patrick Cozzi, Tom Fili, Kai Ninomiya, Max Limper, and Maik Théner. 2016.
KHR_binary_gITF. (2016). https://github.com/KhronosGroup/glTF/tree/master/
extensions/Khronos/KHR_binary_glTF.

Jozef Dobos, Kristian Sons, Dmitri Rubinstein, Philipp Slusallek, and Anthony Steed.
2013. XML3DRepo: A REST API for Version Controlled 3D Assets on the Web. In
Proceedings of the 18th International Conference on 3D Web Technology (Web3D ’13).
ACM, New York, NY, USA, 47-55. DOI:https://doi.org/10.1145/2466533.2466537

Jozef Dobos and Anthony Steed. 2012. 3D Revision Control Framework. In Proceedings
of the 17th International Conference on 3D Web Technology (Web3D ’12). ACM, New
York, NY, USA, 121-129. DOI:https://doi.org/10.1145/2338714.2338736

Google. 2017. Introducing Google Draco. (January 2017).
https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-
3d.html.

Chris Greenhalgh and Steve Benford. 1995. MASSIVE: a distributed virtual reality
system incorporating spatial trading. In Distributed Computing Systems, 1995., Pro-
ceedings of the 15th International Conference on. IEEE, 27-34.

Khronos Group. 2015. gltf 1.0 - Runtime 3D Asset Delivery. (October 2015).
https://www.khronos.org/gltf.

Web3D ’17, June 05-07, 2017, Brisbane, QLD, Australia

Max Limper, Maik Théner, Johannes Behr, and Dieter W Fellner. 2014. SRC - a stream-
able format for generalized web-based 3D data transmission. In Proceedings of the
19th International Conference on 3D Web Technology (Web3D °14). ACM, New York,
NY, USA, 35-43. DOI:https://doi.org/10.1145/2628588.2628589

Zhihan Lu, Paul Guerrero, Niloy J. Mitra, and Anthony Steed. 2016. Open3D: Crowd-
sourced Distributed Curation of City Models. In Proceedings of the 21st International
Conference on Web3D Technology (Web3D ’16). ACM, New York, NY, USA, 87-94.
DOI:https://doi.org/10.1145/2945292.2945302

Christophe Mouton, Samuel Parfouru, Clotilde Jeulin, Cecile Dutertre, Jean-Louis
Goblet, Thomas Paviot, Samir Lamouri, Max Limper, Christian Stein, Johannes
Behr, and Yvonne Jung. 2014. Enhancing the Plant Layout Design Process Using
X3DOM and a Scalable Web3D Service Architecture. In Proceedings of the 19th
International ACM Conference on 3D Web Technologies (Web3D °14). ACM, New York,
NY, USA, 125-132. DOI:https://doi.org/10.1145/2628588.2628592

Manuel Olbrich. 2016. Connecting VT RDF Resources to X3DOM. In Proceedings of the
21st International Conference on Web3D Technology (Web3D ’16). ACM, New York,
NY, USA, 37-41. DOI:https://doi.org/10.1145/2945292.2945314

T. Parisi and R. Arnaud. 2011. 3D REST 3D specification v0.2. (April 2011).
http://rest3d.org.

Michael Rymaszewski. 2007. Second life: The official guide. John Wiley & Sons. ISBN-10:
047009608X.

Andreas Schiefer, René Berndt, Torsten Ullrich, Volker Settgast, and Dieter W. Fell-
ner. 2010. Service-oriented Scene Graph Manipulation. In Proceedings of the 15th
International Conference on Web 3D Technology (Web3D ’10). ACM, NY, USA, 55-62.
DOI:https://doi.org/10.1145/1836049.1836057

Arne Schilling, Jannes Bolling, and Claus Nagel. 2016. Using gITF for Streaming
CityGML 3D City Models. In Proceedings of the 21st International Conference on
Web3D Technology (Web3D ’16). ACM, New York, NY, USA, 109-116. DOI:https:
//doi.org/10.1145/2945292.2945312

Timothy Scully, Jozef Dobos, Timo Sturm, and Yvonne Jung. 2015. 3Drepo.lo: Building
the Next Generation Web3D Repository with Angular]S and X3DOM. In Proceedings
of the 20th International Conference on 3D Web Technology (Web3D °15). ACM, New
York, NY, USA, 235-243. DOI:https://doi.org/10.1145/2775292.2775312

Timothy Scully, Sebastian Friston, Carmen Fan, Jozef Dobos, and Anthony Steed. 2016.
gITF Streaming from 3D Repo to X3DOM. In Proceedings of the 21st International
Conference on Web3D Technology (Web3D ’16). ACM, New York, NY, USA, 7-15.
DOI:https://doi.org/10.1145/2945292.2945297

Kristian Sons, Felix Klein, Dmitri Rubinstein, Sergiy Byelozyorov, and Philipp Slusallek.
2010. XML3D: Interactive 3D Graphics for the Web. In Proceedings of the 15th
International Conference on Web 3D Technology (Web3D ’10). ACM, NY, USA, 175-
184. DOI:https://doi.org/10.1145/1836049.1836076

Christian Stein, Max Limper, and Arjan Kuijper. 2014. Spatial Data Structures for
Accelerated 3D Visibility Computation to Enable Large Model Visualization on the
Web. In Proceedings of the 19th International ACM Conference on 3D Web Technologies
(Web3D ’14). ACM, New York, NY, USA, 53-61. DOI: https://doi.org/10.1145/2628588.
2628600

Timo Sturm, Miguel Sousa, Maik Thoner, and Max Limper. 2016. A Unified GLTF/X3D
Extension to Bring Physically-based Rendering to the Web. In Proceedings of the
21st International Conference on Web3D Technology (Web3D °16). ACM, NY, USA,
117-125. DOI:https://doi.org/10.1145/2945292.2945293

Jan Sutter, Kristian Sons, and Philipp Slusallek. 2014. Blast: A Binary Large Structured
Transmission Format for the Web. In Proceedings of the 19th International ACM
Conference on 3D Web Technologies (Web3D ’14). ACM, New York, NY, USA, 45-52.
DOI : https://doi.org/10.1145/2628588.2628599

Unity Technologies. 2016a. Coroutines. https://docs.unity3d.com/Manual/Coroutines.
html. (2016).

Unity Technologies. 2016b. Getting started with WebGL development. (November
2016). https://docs.unity3d.com/Manual/webgl-gettingstarted.html.

Unity Technologies. 2016¢. Loading Resources at Runtime. https://docs.unity3d.com/
Manual/LoadingResourcesatRuntime.html. (2016).

Unity Technologies. 2016d. WebGL, CORS and XMLHttpRequest.withCredentials. (Oc-
tober 2016). https://forum.unity3d.com/threads/webgl-cors-and-xmlhttprequest-
withcredentials.438004/.

Web3D Consortium. 1997. Information technology — Computer graphics and image
processing — The Virtual Reality Modeling Language (VRML) - Part 1: Functional
specification and UTF-8 encoding. (1997). International Standard ISO/IEC 14772-
1:1997.

Web3D Consortium. 2013. Information technology — Computer graphics, image
processing and environmental data representation — Extensible 3D (X3D) - Part
1: Architecture and base components. (2013). Internation Standard ISO/IEC
19775-1:2013.

https://doi.org/10.1145/1559764.1559784
https://doi.org/10.1109/VRAIS.1993.380753
https://doi.org/10.1109/VRAIS.1993.380753
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_binary_glTF
https://github.com/KhronosGroup/glTF/tree/master/extensions/Khronos/KHR_binary_glTF
https://doi.org/10.1145/2466533.2466537
https://doi.org/10.1145/2338714.2338736
https://doi.org/10.1145/2628588.2628589
https://doi.org/10.1145/2945292.2945302
https://doi.org/10.1145/2628588.2628592
https://doi.org/10.1145/2945292.2945314
https://doi.org/10.1145/1836049.1836057
https://doi.org/10.1145/2945292.2945312
https://doi.org/10.1145/2945292.2945312
https://doi.org/10.1145/2775292.2775312
https://doi.org/10.1145/2945292.2945297
https://doi.org/10.1145/1836049.1836076
https://doi.org/10.1145/2628588.2628600
https://doi.org/10.1145/2628588.2628600
https://doi.org/10.1145/2945292.2945293
https://doi.org/10.1145/2628588.2628599
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/Manual/LoadingResourcesatRuntime.html
https://docs.unity3d.com/Manual/LoadingResourcesatRuntime.html

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture Overview
	3.1 3D Repo
	3.2 Unity
	3.3 3DRepo4Unity Library

	4 Web Client
	5 Portable Scene Graph
	6 Unity Import
	6.1 Geometry Import
	6.2 Material Import

	7 User Interface and Deployment
	7.1 WebGL Compilation

	8 Evaluation and Discussion
	9 Conclusions
	Acknowledgments
	References

