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Abstract

Current virtual environment (VE) systems employ a num-
ber of techniques for navigation such as walking on a plane,
or 
ying through space. When exploring complex environ-
ments such as building interiors, the navigable spaces might
include bridges, steps and slopes, and in some applications
it is desirable to keep the participant at a realistic height
above the ground. The techniques described in this paper
can track the surface point which the participant is above
for a tiny computational cost.

1 Introduction

Virtual environments use a number of navigation techniques
for exploring scenes, depending on the input devices used
and the task being performed [10, 22, 18, 11]. This paper is
concerned with so called general navigation [10] techniques
that allow free exploration around a model rather than tar-
geted, or speci�ed path movement. The focus is on explo-
ration of complex 3D scenes such as landscapes and building
interiors, where rather than being completely free to explore
the environment, the participant is constrained to follow the
ground or building 
oors at an anthropomorphically correct
eye-level. This maintainance of the correct eye-level above
the 
oor gives compelling cues about the relative size of ob-
jects, and it can be an important factor in environments
where a sense of presence is important[16].

Simple techniques exist to constrain motion over surfaces
such as terrain grids where a single point on the surface
lies below the participant. However they do not deal with
collision with vertical surfaces, or objects such as steps and
bridges, where there may be many possible surfaces to follow.

The technique described in this paper creates a cell struc-
ture that makes it very simple to determine the surfaces to

consider at any point. The cell structure is designed to be ex-
tremely e�cient for static elements of the scene, though it is
possible to add and remove elements once the cell structure
has been constructed. Traversing the cell structure takes a
small constant amount of time each frame since the basic
step is a simple point in polygon test. The time required
to build the cell structure is signi�cant, but it compares
favourably with the time to load the scene and we also show
how the cell structure can be built incrementally without
any initial set up time.
This paper reviews related work on collision detection and

spatial structures in Section 2. The basic techniques are de-
scribed in Section 3, and Section 4 gives extended techniques
used in practice. The performance of the algorithms is eval-
uated in Section 5 and possible future work is outlined in
Section 6.

2 Previous Work

Many techniques exist for general navigation within virtual
environments. For example, the eyeball in hand metaphor
[22] uses a 3D tracking device to directly specify the posi-
tion and orientation of the viewpoint. However few navi-
gation techniques employ terrain following and most allow
completely free movement about the model, which can lead
to the participant losing orientation or managing to position
themselves inside one of the scene objects.
Terrain following is simple to perform for surfaces such as

height �elds over regular grids where there is a single point
of intersection with the line extending vertically downwards
from the viewpoint. In this case, the surface face to follow
can be determined by the extent of the height �eld and the
grid spacing.
For irregular terrains, or scenes with multiple layers such a

technique can not be applied. For these more complex cases,
terrain following can be considered as a case of collision de-
tection between the participant's avatar and the scene, and
e�cient techniques exist for this [5, 7]. However the appli-
cation of general collision detection is more complex than
needs be, since we are simply searching for a single point
on a static surface rather than collision between multiple
moving objects.
Certain data structures such as hierarchical bounding

spheres [8] and quad-trees and octrees [14] are appropriate



for the general case of locating points in a scene. Indeed the
QOTA system [1] uses a quad-tree search structure for the
terrain following problem and can produce a result in time
proportional to the log of the scene size.

3 Approach

The algorithm we describe is one part of a complete nav-
igation metaphor. It takes the current viewpoint and the
projected next viewpoint, as extrapolated from the current
position and direction of movement, and returns a sensible
position for the next viewpoint. By a sensible position we
mean a position that doesn't involve passing through an ob-
ject, and is at a given height above the surface below.

The next position is found by traversing a cell structure
that contains the information required to determine surface
heights and surface collisions in the edges of the cells.

We �rst give an overview of the underlying cell structure
and its use, and then describe the algorithm to build the
cell structure in Section 3.2 and the algorithm to traverse
the cell structure in Section 3.3.

3.1 Cell Structure

The algorithm to determine the surface point assumes the
use of a planar cell structure that embeds the required nav-
igation information in the boundaries between cells. Figure
1(a) shows a very simple scene that is to be navigated over
and Figure 1(b) the resulting cell structure. The plane is
labelled P and the faces of the box are labelled B1 to B5,
with B1 being the uppermost face1.

The cell diagram shows �ve cells that are formed by the
projection of of the faces of the objects onto a horizontal
plane. In cases where the face is vertical the projection ap-
pears as a single line. The core of the algorithm is that once
the potential objects to follow are known for any particular
cell, it can be found for an adjacent cell by examining the
contents of the line segment that separates the two. For ex-
ample, Figure 1(c) shows the possibilities when leaving Cell
1.

Initially, when inside Cell 1 we are traversing over the
Plane P. If we cross the outside boundary zw, then we must
cross an edge containing a reference to P, so we remove
that face from consideration and we are left navigating over
empty space. If we leave Cell 1 between point w and x, the
edge we cross holds no reference but there is an adjacent
cell, so we now continue navigation over Plane P but we are
in Cell 5. Likewise crossing the boundary between points y
and z we switch to Cell 3.

The case when crossing between x and y is more involved.
In general for any edge that does hold references to faces,
we have to consider the following two possibilities:

� If a referenced face is vertical or near vertical we might
want to stop at the edge.

1Note that the sixth (bottom) side is not represented in the
diagram because it is not a candidate for collision or navigation
over.

� If a referenced face is of the correct height and orienta-
tion, we might want to switch to constrain navigation
to follow this face.

In our example, when crossing from Cell 1 to Cell 2 this
equates to our examining B2 to see if it is too high for us to
pass and so blocks our motion, and then examining B1 to
see if it is low enough for us to step on to. Of course, we are
still over P as well and in general the \stepping" would be
a heuristic that chooses between the planes we are over and
selects the one to constrain navigation to (x3.3).

3.2 Construction

The cell structure is based on a winged edge data structure
[2]. Without going into implementation detail that can be
found elsewhere [6] the important aspect of the winged edge
structure is that each cell edge contains a reference to the
two cells that share this edge, and a list of scene faces from
which edges project to this cell edge.
The cell structure can be built by recursively splitting

cells into two components. Firstly we assume that with the
cell we have a list of all the segments of face edges that
intersect this cell. We select one, and split the cell into two
components with this face edge. The cell is split by inserting
a new cell edge that spans the original cell and contains the
face edge as subsegment. In some cases the face edge will
already span the cell, but it is more likely that the new cell
edge will extend the face edge in one or both directions. The
remaining face edges are sorted into two sets depending on
which of the new cells they are within. Face edges that span
the newly created cell edge are split and the parts placed
in the appropriate cells so that each cell contains only those
face edges that fall within that cell. The initial cell is a single
convex cell that encompasses the whole scene.
This process e�ectively de�nes a binary space partitioning

(BSP) tree, and we will discuss the approaches to selecting
suitable splitting edges in order to build a more optimal
cell structure in Section 4.2. Similar techniques have been
used before for discontinuity meshing for radiosity models
[9], though the use here is more concerned with the main-
tainance of edge data than vertex data.
The process of splitting a cell in to two has various cases

depending on whether the points of intersection of the ex-
tension of the face edge to the boundary of the cell lie at
cell vertices or on cell edges. Essentially the process breaks
down into inserting cell vertices on edges if required, and
then inserting the new edge and re-building the winged edge
data structure for the new cells. The splitting of a cell edge
creates two new edges and we have to separate the associ-
ated scene face edges into two sets, depending on whether
the scene face edges overlap one or other, or both of the new
cell edges.
Returning to the example of Figure 1, we illustrate the

insertion routine, starting from the point when Plane P has
been fully inserted. Figure 2 shows the eight steps required
to build the cell structure.
Initially we are considering the insertion of 5 faces into

the structure. The edges to be considered are four from
face B1 (labelled B11 to B14) but only one from each of the
faces B2 to B5. This is because these faces are vertical and



(a)

<B1,B5> Cell 3

Cell 4

Cell 5 <B1,B3> <P><P>

Cell 1

<B1, B2>

Cell 2

<P>

<P>

<B1,B4>

(b)

Cell 5

Cell 1

<B1, B2>

<P>

Cell 3

w x zy

Cell 2

(c)

Figure 1: Example scene and its cell structure
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Figure 2: Example cell construction

the projection of the face edges are either coincident or are
points, in which case we can ignore them.

In step 1 we select face edge B11 and split the initial
cell into two by creating two new vertices on the boundary
of the original cell, and then linking these new vertices to-
gether. The remaining face edges are sorted into two sets,
and we �nd all except B2 lie on the \inside" of B11. B2 lies
coincident with B11, so we can add to either set. We add it
to the outside by default. In step 2 we select B13, and this
time split the bottom cell into two in a similar manner.

The insertion of face edge B14 in step 3 forces the splitting
the cell edges containing B11 and B13 into two. This means
that the top cell now has 5 edges, with two of them being
collinear. Of the two new cell edges in the top cell, one no
longer overlaps B11, so we can remove the reference to it
from that cell edge. Similarly the insertion of face edge B12
in step 4 a�ects the top and bottom cells also.

After step 4 each of the four outer cells contains a reference
to one face edge that lies on its border. Steps 5-8 take each
of these face edges in turn and adds them to the cell edge
which they overlap, resulting in the complete cell structure.

For example at Step 5, we have to insert face edge B2 in to
the top most cell and we �nd it lies on the boundary of the
cell. We thus add it to all the cell edges which overlap this
face edge, which in this case is a single cell edge.

3.3 Traversal

The traversal algorithm assumes that the set of candidate
faces to follow is known at an initial point. For example
for any point inside the innermost cell in Figure 1(b), the
surfaces are B1 and P. For each subsequent frame we test
if the prospective destination point is within the same cell
as the previous point. If this is so we have �nished. If
the prospective destination point is not in the same cell we
�nd the cell edge we must cross to head towards that point.
Once we have that edge we �rst test each of the scene faces
that are referenced at the edge to see if any of them stop us
crossing that edge in which case we have �nished and can
return an updated destination point on this cell boundary.
Second if we can cross the edge, we update the set of faces to
follow with those scene faces referenced by this cell that are
not vertical. Updating the set of faces to follow involves the



exclusive OR of the current set of faces with those referenced
at the cell edge which are not vertical. From the new set of
faces, we then select the face to follow.

In practise, we have to accommodate the fact that we
might cross more than one cell in a single frame. This just
requires us to recurse if we cross to an adjacent cell to test
if we have reached the destination cell. This is outlined in
pseudo code in Figure 3.

To select the actual face to follow from the set of candi-
dates at a point, we need to apply some heuristics based
upon the navigation metaphor within the environment.
Some of the heuristics used in an implementation within the
DIVE system (x5.1) include:

1. For all the non-vertical faces we are over in the new
cell, gather those that we could step on to. That is all
the roughly all the faces whose nearest edge is above
the sole of our avatar's foot, but below its knee.

2. If this set is non empty - \step" onto the highest

3. If this set is empty �nd the highest face below the foot
of the avatar if there is one and \fall" onto it.

4. If this face does not exist, then use any face above the
foot if there is one and \teleport" onto it.

5. If this face does not exist, we are outside the model.

The meanings of \fall", \step" and \teleport" as well as
the behaviour upon stopping at a cell boundary when a
steep face is encountered depend foremost on the naviga-
tion metaphor imposed by the environment and browser.
Behaviours such as reactions to collision detection, falling
from heights and steps up, are not speci�ed by the traver-
sal method which solely determines the point of surface be-
low the participant and the point of collision with the scene
boundary. However some information about possible tech-
niques must be coded into the traversal in order that the
correct choices be made when switching between surfaces.
This includes information about what height traversals are
allowed and whether long drops are permitted (x5.1 for some
examples).

To determine the faces to consider at the starting point
we can either rely on a pre-calculation, or calculate it by
traversing from the \outside" of the world (i.e. from a point
we know is over no faces), to the starting point, without
stopping at steep faces.

4 Extensions to Basic Model

The basic method works well for medium sized models of
roughly 10,000 faces. For larger models, we have used the
following techniques in order to reduce the cost of both the
set up phase and traversal phase.

4.1 Incremental Building

Unlike the spatial structures required for visibility ordering
[20] or shadow computation [4], there is no need for a com-
plete spatial structure to exist, or for the total ordering to
be known. In fact only the current cell's structure has to be
up to date.

This means we can incrementally build the cell structure
depending on which cells we have actually entered. Return-
ing once more to the example in Figure 1(b), if we stay
within the top cell then there is no need to construct the
lower cells, and we could have stopped after step 1 in the
building process of Figure 2.

The key to the incremental building is to store the un-
inserted face edges within the cell they fall in, and only pro-
cess them when that cell is entered. Upon entering a cell the
build process is then striving to separate the current posi-
tion of the navigation point in to a cell where no more edges
need to be inserted. The pseudo code for this new traversal
procedure is given in Figure 4
The building procedure is simpli�ed somewhat if an ex-

plicit BSP tree is added that records the ordering the cell
partitions. The BSP tree keeps single splitting edges at in-
ternal nodes and cells at its leaves. The use of a BSP allows
objects to be added at a later point, since they can be �l-
tered down the tree to the relevant cell. Note however that
the BSP tree itself does not contain enough information to
quickly determine the candidate faces for navigation at a
point, so it is not an alternative to the cell-cell traversal
process2.

4.2 Selection Heuristics

The procedure which determines the order in which edges
are chosen to split cells is critical for the performance of the
build and traversal algorithms. Although any complete cell
structure will give a correct ordering, the number of cells
and shape is important both for the memory requirements
and the speed at which they can be traversed. Generally we
wish to have as few cells as possible, and these cells should
contain not more than a speci�ed number of edges so that
the test for exiting a cell does not take take too much time.

Techniques used to build e�cient BSP tree structures are
immediately applicable [13, 12] in the non-incremental case.
If this is being performed with the aim of storing the struc-
ture alongside the model, then time can be taken in order
to evaluate several choices of the splitting line at each cell
split. In the incremental case, we can of course use a similar
technique if the time is available. For instance if there is
slack time in the frame cycle initial building could be done
on adjacent cells. However it is more likely that we wish to
determine the point of navigation as quickly as possible. In
this case the heuristic might be to choose which ever edge
is most likely to separate the current point from the rest of
the edges in the cell.

One such heuristic is to sample a few of the edges in the
cell and choose the one that is within a certain range of
being orthogonal to the direction of travel, and is closest to
the viewer.

In practise, if a large object with regularly de�ned facets
exists in the world, such as a terrain, or a regular room layout
in a building, it makes sense to use this a basic partitioning of
the world. For exterior scenes, bounding boxes can be used

2An extra conditionon the order of edge insertionwould rectify
this, but this would remove one option for optimising the tree x4.2.
The required condition is that all the edges of a face be inserted
before considering any other edge for insertion.



Point Traverse(Point old, Point new, Cell currentcell

FaceSet candidatefaces, Face followingface) {

if (old and new inside currentcell)

return (new constrained to followingface)

else

edge = findCellEdgeIntersectingLine(from old to new)

facesatedge = retrieveSceneFacesAtEdge(edge)

mid = pointOnCellBoundaryIntersectingLine(from old to new)

if (facesatedge hinder progress) return mid

othercell = otherCellSharingEdge(currentcell,edge)

update candidatefaces and followingface

return Traverse(mid,new,othercell,candidatefaces,followingface)

}

Figure 3: Pseudo code for the traversal procedure

Point IncrementalBuildTraverse(Point old, Point new, Cell currentcell

FaceSet candidatefaces, Face followingface) {

if (old and new inside currentcell)

return (new constrained to followingface)

else

edge = findCellEdgeIntersectingLine(from old to new)

facesatedge = retrieveSceneFacesAtEdge(edge)

mid = pointOnCellBoundaryIntersectingLine(from old to new)

if (facesatedge hinder progress) return mid

othercell = otherCellSharingEdge(currentcell,edge)

if (othercell is complete)

update candidatefaces and followingface

return IncrementalBuildTraverse(mid,new,othercell, candidatefaces,followingface)

else

split othercell with one of its face edges

return IncrementalBuildTraverse(old,new,currentcell, candidatefaces,followingface)

}

Figure 4: Pseudo code for the combined incremental build and traverse procedure

since inserting these boxes is likely to separate the navigation
point from the object.

4.3 Expected Performance

If the navigation cell structure is completely built, either by
pre-calculation or as the world is loaded, then the expected
performance of the algorithm depends solely on the average
number of cells crossed in one time frame. This is because
we can place limits on the of vertices in a cell3 .

The incremental build method has a similar simple test
whilst remaining within a single cell, but on traversing an
edge, a cell might need to be built. The expected cost of
this is of the order of log of the number of edges to insert.

Some characteristic scene objects are shown in Figures
5(a) and 6. The spiral staircase in Figure 5(a) generates
an interesting cell structure, see Figure 5(b), where inside

3Note we actually constrain the number of non-collinear ver-
tices in a cell. A cell might have numerous collinear vertices, but
a single line point test provides a negative test for all the collinear
edges.

a cell we have 0 to 3 associated faces depending upon the
number of steps the navigation point is over. The traversal
of this structure leads to approximately two or three cell
traversals for each step, which might correspond to a cell
traversal every three to four frames depending on the speed
of navigation and the actual navigation metaphor employed.

Figure 6 shows two objects which one might expect to
have similar traversal characteristics. However the construc-
tion of the arch means that only one face is under considera-
tion within each cell, whereas on top of the pyramid, all the
faces are being considered since each layer is solid. The pyra-
mid has internal non-visible faces, but the algorithm naively
considers those faces as candidates for traversal. These hid-
den faces could of course be removed in a pre-processing
stage. Indeed the required pre-processing would probably
be applied anyway simply to increase rendering speed.
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Scene Number

1 2 3 4 5

Size in faces 504 1019 2071 4031 7807

Number of cells 476 1023 2091 4064 8499

Average cell traversals per frame 0.25 0.28 0.30 0.35 0.35

Table 1: Statistics for test scenes

The time taken to build the complete cell structure for
Scene 5 was 5.5 seconds on an SGI Impact with one 200
MHZ IP22 Processor. This compares favourably to the time
of 16.5 seconds it took to load the 1.3M geometry �le into
the scene browser �le prior to the cell structure's being built.
The cell structure could of course be pre-calculated and
stored with the scene.

5.3 Space Costs

Since each cell and cell edge requires approximately the same
space as the corresponding scene element, the space costs of
the algorithm were examined by comparing the number of
elements in the cell structure to the number of equivalent
elements in the original scene. Figure 8(a) gives the number
of scene faces and the number of resulting cells, and shows
that there is a linear relationship between the two. Figure
8(b) shows the relationship between the number of face edges
in the original scene and the number of cell edges. The
calculation of the number of face edges assumes the usual
case where the scene is described without edges being shared
between faces. Again there is a linear relationship between
the two.

These results show that for a simple implementation the
cell structure requires approximately the same amount of
space again as the scene. However, since the cell structure is
constructed from a vertical projection of the original scene
elements, much of the vertex and edge data could be shared
between the two.

5.4 Incremental Build Cost

Figure 9 shows four stages of the incremental building of
the cell structure of the spiral staircase shown in Figure
5(a). The complete cell structure shown in Figure 5(b) cor-
responds to the insertion of 204 lines into the cell structure.
At the four stages of Figure 9 the number of lines that have
been inserted are 26, 57, 75 and 104 respectively. The path
over the structure corresponded to one complete circuit of
the spiral, visiting each step once. The fact that only half the
lines actually had to be inserted is very encouraging espe-
cially when we consider that for larger scenes, many objects
may not even be visited.

6 Future Work

The current algorithms assume that there is very little adja-
cency structure in the original scene, and that the faces are
processed in no particular order. If such information exists,
then it can be exploited in the building process to aid the

sorting of the elements into the correct cells and the subse-
quent cell traversal. For example, if hierarchical bounding
boxes exist, these could retained within cells to provide a
quick rejection test for the incremental traversal algorithm.
In an ideal world, the original scene would be described us-
ing multi-resolution BSP trees [13], in which case the cell
structure could be formed very e�ciently using BSP tree
merging [12].

The cell structure could possibly be exploited for more
general purpose collision detection since it is is possible to
trace more than one point through the structure. We spec-
ulate that it would be possible to use the cell adjacency
information for rapid rejection tests for collision algorithms
such as Uno and Slater's [21] that rely on �nding separating
planes between objects.

7 Conclusions

The algorithms described in this paper provide an e�cient
means to provide terrain following through complex environ-
ments. The algorithms can be exploited in many di�erent
navigation algorithms, and might even have broader appli-
cation for general collision detection.

Results show that the simple traverse algorithm has a very
low time cost, better than other similar algorithms. However
this does require a complete cell structure which is relatively
expensive to build. However using a combined traverse and
build algorithm, the cell structure can be built incremen-
tally, considerably reducing the memory requirements for
the algorithm.
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