
A Dataflow Representation for Defining Behaviours within Virtual Environments

Anthony Steed
Queen Mary and Westfield College
Department of Computer Science

London
steed@dcs.qmw.ac.uk

Mel Slater
University College

Department of Computer Science
London

M.Slater@cs.ucl.ac.uk

Abstract

Construction of immersive virtual environments usually
takes place outside the virtual environment in configuration
files or application code. The system presented in this pa-
per allows interaction with and behaviours of objects to be
defined whilst immersed within the system by manipulating
a dataflow representation of the dialogue occuring between
the input devices and virtual objects. A concrete example
is presented that illustrates the flexibility and customization
opportunities that this approach provides.

1. Introduction

With many applications now being developed for immer-
sive virtual environment systems there is a growing need for
effective tools to create and manipulate the environments
that will be presented. To date most description systems
have focussed mainly on the appearance of the environment
that is , the geometry, colour, lightingand positionof objects
within a three dimensional scene. This is epitomized by the
recent generation of VRML 1.0 (Virtual Reality Modelling
Language) browsing and authoring tools which concentrate
on the presentation, but not the behaviour and interaction
with objects.

The behaviour of objects and especially the interactions
of the participant with the environment are usually hard-
coded within the application that generates the virtual envi-
ronment. Various toolkits have been designed to assist with
the construction of these applications and some current sys-
tems allow some scripting of simple objects behaviours and
provide a standard application that will display these.

However, the usual method for programming these sys-
tems is to display the environment, enter the system and
view it by putting on a helmet or shutter glasses, then come
out make changes and either re-run or at worst re-compile
the application.

The main idea behind this work is to create a virtual envi-
ronment withinwhich it is possible to both experience an en-
vironment and make changes to its underlying interactions
and behaviours without having to leave it.

The next Section describes the motivation behind creat-
ing such a system. Section 3 describes related work in vir-
tual reality and visual programming. Section 4 explains the
underlying model to describe environments. Section 5 de-
scribes a simple example table tennis application and Sec-
tion 6 presents the conclusions.

2. Motivation

Previous work [9, 8] has shown that the best metaphors
to employ for interaction in an 3D environment depend on
the task being undertaken and the person performing the
task. For example compare three navigation metaphors im-
plemented for an immersive system:

1. Fly in the direction the hand is pointing by pressing a
3D mouse button.

2. Fly along line of sight by pressing a 3D mouse button.

3. Fly along line of sight by making the gesture of “walk-
ing in place” (virtual treadmill metaphor.)

Flying in the direction of hand pointing is a useful
metaphor it since allows the participant to fly around an ob-
ject whilst their gaze remains fixed upon it. Unfortunately
this can be quite tiring for the participant’s arm so flying
along the line of sight, which doesn’t allow the same flexi-
bility in direction but does allow the participant to leave their
arm at their side, is a possible alternative.

However the hand is still involved in the action of walk-
ing since the participant has to press a button so the third
metaphor relieves this by using a whole body gesture of
walking in place.

Not only do each of these metaphors fit particular tasks
well, but their usage can affect the level of presence a person



might have in an environment. For example, flying in the di-
rection the hand is pointing might be best when exploring an
abstract data set, but for a building evacuation training ap-
plication the virtual treadmill might be better since walking
in place leads to fatigue which might be a necessary compo-
nent of the training.

Thus in the construction of a new environment we have
a set of possible interaction metaphors to use and making
these manipulable from within the environment means that
we can rapidly prototype new environments as well as cus-
tomize existing ones.

In the system described in this paper we have built a
immersive environment within which it is possible to do
this, by manipulating an immersive representation of the
dataflow between the sensor devices and the tools and ob-
ject behaviours that exist within the environment.

3. Related Work

Essentially the system is a hybrid visual programming
language and object hierarchy. The dataflow, from input de-
vices through filters to object behaviours, has a visual repre-
sentation that can be manipulated while inside the environ-
ment to have immediate effects on the environment.

In describing current visual programming systems for
virtual reality we have to distinguish between:

� Visual languages to describe virtual environments.

� Visual languages within virtual environments.

The first type of system extends the usage of data flow
languages for user interface description to describing the in-
terface of the virtual reality system. Body Electric from
VPL is such a language [4, p 212-219]. Body Electric ran
on a Machintosh adjacent to the main virtual environment
generator. Data flowed from the input devices through data
‘massage’ units to drive events in the virtual environment.
The AVS system for scientific visualizationhas also been ex-
tended to support visualization within virtual environments
[7].

The second type of system involves a visual language
which rather than being manipulated on a 2D display is ma-
nipulated within a virtual environment. Glinert proposes ex-
tending his BLOX method which uses flat jigsaw like pieces
to 3D using cubes that can be snapped together much like
childrens’ building blocks [2].

Producing 3D animations is the aim of at least two vi-
sual programming systems which illustrate different direc-
tions these tools can take. VirtualityBuilder II [3] is an inte-
grated 3D environment in which constraint and object paths
can be specified to create animations. VPLA [5] is an in-
terpreted language specified by a 3D network editor that de-
scribes components of an animation in terms of hierarchical

objects and actions on them such as transformations, model-
ing operations, deformations, particle systems and recursive
procedures.

Two virtual environment languages for programming
that have been implemented are CUBE [6] and Lingua
Graphica [10]. CUBE allows visualization of expressions
in a functional language, and some limited editing through
a desktop based interface. Lingua Graphica is a 3D editor
for a C++ based language. The Lingua Graphica workspace
looks like a tool board with the tools being the various li-
brary functions, primitives and pre-defined types. These can
be juxtaposed with the relations between the objects corre-
sponding to the syntax rules of the language. Once a proce-
dure has been constructed it can be written out directly in a
text form that is compilable.

The union of these two types of environments would be
a visual language within a virtual environment to describe a
virtual environment. dVISE from Division [1] is an example
of a system that goes some way towards such a system in
that there is an immersive menu driven interface that allows
editing of object properties and simple behaviours.

4. Environment model

The basic dataflow model consists of three elements:
firstly data sources that produce streams of data based on ex-
ternal events, secondly filters that accept one or more input
data streams and generate one or more output streams, and
thirdly receptors that accept input streams and perform some
action in the environment modelled by the dataflow.

Examples of these element for a immersive virtual envi-
ronment are:

1. Sources: position trackers, joystick buttons and glove
data.

2. Filters: gesture recognition, constraints and collision
detection.

3. Receptors: virtual tools such as pick and fly and object
behaviours such as lights turning on.

Figure 1 shows the abstract definition of the virtual tread-
mill metaphor implemented with such elements.

The four components of the diagram are:

� The head tracker data source that returns position infor-
mation.

� The participant object is the representation of the par-
ticipant within the environment and includes specifica-
tion of the viewpoint.

� The gesture filter which takes two inputs, a position
stream from which to recognize a gesture and a ges-
ture specification and reports success on a binary out-
put stream.



Gesture Recognition

Participant
Object

Move

Tracker
Head

Function

Figure 1. The virtual treadmill metaphor

� The move receptor that takes an object identifier, a po-
sition and an enabling binary stream.

In effect Figure 1 means: move the participant in the di-
rection that they are lookingwhen they are making the walk-
ing in place gesture.

4.1. Immersive Representation

Inside the environment the dataflow is modelled by a
node and arc diagram with each source, filter and recep-
tor being a separate object in the environment having a set
of sub-objects representing the input and output connection
points. Input and output connectors are joined by stretchable
tubes which can be dragged and snapped to appropriate con-
nectors of the same type. The immersive presentation of the
virtual treadmill, similar to its abstract description, is shown
in Figure 2.

The basic environment is built from a collection of such
dataflow segments, defining global functions such as navi-
gation, picking, selecting, object copy and object delete.

4.2. Hierarchy

The amount of detail present in the basic environment de-
scription is already quite large, so additional tools and meth-
ods are used to hide currently unimportant information. The
basic approach is to create an meta-object that encapsulates
a collection of objects. This new meta-object can have an
arbitrary subset of the input and output connections of its
sub-objects as its own connections and in particular it has a
special output node that returns an identifyinghandle so that
it can be connected and acted on by nodes in the dataflow
model (for example the participant object in Figures 1 and
2).

Inside the virtual environment a meta-object can be dis-
played at several levels of detail, effectively hiding informa-
tion unnecessary at the time. Several levels of detail in the
definition of a button are shown in Figures 3 and 4. At the

Figure 2. Immersive representation of the vir-
tual treadmill metaphor

lowest level of detail the button is just an object within the
environment. The next level up shows that it generates an
output that is connected to another object. And at the high-
est level we see that it generates an output when an object
collides with the geometry of the meta-object. The dotted
ellipse in Figure 3 indicates the detail normally hidden.

MediumLow Detail

Filter
CollideCollide
Filter
Collide
Filter

High

Figure 3. Abstract levels of detail of the button
objects

5. Example Table Tennis Application

A virtual environment application is thus described in a
dataflow representation that is an integral part of that ap-



Figure 4. Immersive presentation of levels of
detail of the button Objects

plication. In reality on entering the application all the de-
tail of the dataflow would be hidden inside encapsulating
meta-objects, which could be examined when modifications
needed to be made.

This Section illustrates the components and possibilities
for modification of an example table tennis application.

The current system was implemented on a Division Pro-
vision 100VPX running dVS version 2.0.

5.1. Components

The major components of the table tennis application,
shown in Figure 5, are:

� The participant who encompasses all the standard in-
teraction techniques.

� The ball which has a dynamics behaviour described in
full below.

� The bat and table on which the ball will bounce.

� The net and floor which reset the ball when the ball col-
lides with them.

� The opponent which is either an automaton or a second
player equipped with a second bat.

Each of these is a meta-object inside the environment that
contains several dataflow objects. The ball meta-object is
illustrated in Figures 6 and 7 with its major components,
the dynamic behaviour receptor and a collide filter. The ba-
sic version of the dynamic behaviour receptor takes five in-
puts, identity of object to control, notification of the iden-
tities of colliding objects, a reset flag, time values and a
gravity strength value. The ball meta-object is connected

Figure 5. The table tennis application

to the identity input of the dynamic behaviour as would be
expected, and similarly the dynamic behaviour is concerned
with collision events with the same object.

Everything within the dotted ellipse in Figure 6 is a com-
ponent of the ball object and all objects within and arrows
leading to that ellipse are detail that would normally be hid-
den during play. In Figure 7 the external connections are
not shown since they are connected to filters or other meta-
objects that are currently not shown at a high level of detail.

Filter
DynamicCollide

Object
Ball

GravityTimeReset

Filter

Figure 6. Abstract definition of the ball object

The reset input both initializes the dynamics behaviour
and stops it and returns the object to its original position.
This corresponds to serving the ball and the reset input can
be connected to many sources.

Of the other components of the environment, the net and
floor are in effect buttons that are also connected to the ball’s
dynamic behaviour in order to reset it.

5.2. Customization

Possibilities for customization are many and various.
Any of the objects can be changed and copied so there could



Figure 7. Immersive definition of the ball ob-
ject

be two balls shaped like plants for example. Thus table ten-
nis is a limiting description of the application since the com-
ponents could be re-arranged and modified to play volley-
ball for example, though editing of the geometry of the ob-
jects themselves is not yet possible in this system.

More interesting customizations arise when considering
how the ball is served, i.e. determining what is connected to
the reset input of the dynamic behaviour filter. Three pos-
sibilities are : connection to one of the 3D mouse buttons,
connection to a virtual button and connection to a gesture
recognizer. The second and third allow a lot of flexibility,
for example the button could be positioned near to the table
or could be the table itself so tapping the table would serve
the ball. Alternatively, since gestures can be defined inside
the environment, serving could be enabled by waving the bat
under the ball or standing in the serve position.

Another customizable component of the application is
the opponent: an application specific behaviour that knows
about the ball and table (and possibly the other player) and
moves a second bat in order to return the ball. In a collab-
orative setup customization could involve simply removing
this behaviour and having a second participant pick up an-
other object and use it as a bat (the second participant could
always cheat by not removing the computer player and play
two against one.)

One part of the application that is designed to be cus-
tomizable is gravity, which is connected to a virtual slider
since no real dials or sliders are connected to the current sys-
tem. Whether or not this slider is part of the default applica-
tion, i.e. whether it is visible when first entering the virtual
environment, is also easily changed.

6. Conclusion

The system described in this paper provides a simple and
powerful way in which to construct and modify immersive
virtual environments. Care has been taken not to provide
a monolithic system that is a completely general program-
ming system which would generate very complex and hard
to modify dataflow diagrams, but rather to provide filters and
behaviours useful to immersive environment creators. In-
evitably there will be applications requiring the coding of
new behaviours but the effort required will small given the
infrastructure that already exists.

7. Acknowledgements

Thanks to Martin Usoh for technical help on the Pro-
vision. This work is funded in part by the EPSRC/ROPA
grant GR/K38090, The Distributed Extensible Virtual Real-
ity Laboratory. Anthony Steed is supported by a UK EPSRC
award.

References

[1] Division. dVISE for Unix Workstations, User Manual (draft),
1995.

[2] E. Glinert. Out of flatland: Towards 3-d visual programming.
In Proc. of the 2nd Fall Joint Computer Conference, pages
292–299. IEEE Computer Society Press, 1987.

[3] E. Gobbetti and J.-F. Balaguer. An integrated environment to
visually construct 3d animations. Computer Graphics, Pro-
ceedings of SIGGRAPH 95, pages 395–398, 1995.

[4] R. S. Kalawsky. The Science of Virtual Reality and Virtual
Environments. Addison-Wesley, 1993.

[5] W. Lytle. Vpla: Visual programming language for anima-
tion. Technical Sketch, SIGGRAPH95, 1995.

[6] M. Najork. Programming in Three Dimensions. PhD thesis,
University of Illinois at Urbana-Chapaign, 1994.

[7] W. Sherman. Integrating virtual environments into the
dataflow paradigm. In Fourth Eurographics Workshop on
ViSC, Abingdon, UK, April 1993.

[8] M. Slater, M. Usoh, and A. Steed. Taking steps: The in-
fluence of a walking metaphor on presence in virtual real-
ity. ACM Transactions on Computer Human Interaction,
2(3):201–219, 1995.

[9] A. Steed and M. Slater. 3d interaction with the desktop bat.
Computer Graphics Forum, 14(2), 1995.

[10] R. Stiles and M. Pontecorvo. Lingua graphica: A visual lan-
guage for virtual environments. In Proc. 1992 IEEE Work-
shop Visual Languages, pages 225–227. IEEE Computer So-
ciety Press, 1992.


