
The London Travel Demonstrator
Anthony Steed

Department of Computer Science
University College London

Gower St, London, UK, WC1E 6BT
+44 020 7388 7665

A.Steed@cs.ucl.ac.uk

Emmanuel Frécon, Anneli Avatare
Swedish Institute of Computer Science

Box 1263
SE-164 29 KISTA
+46 8 633 15 34

emmanuel | anneli@sics.se

Duncan Pemberton, Gareth Smith
Computing Department

Lancaster University
Lancaster, UK, LA1 4YR

+44 1524 593801

pemberto | gbs@comp.lancs.ac.uk

ABSTRACT
Travel can be a stressful experience and it is an activity that is
difficult to prepare for in advance. Although maps, routes and
landmarks can be memorised, travellers do not get much sense of
the spatial layout of the destination and can easily get confused
when they arrive. There is little doubt that virtual environments
techniques can assist in such situations, by, for example,
providing walkthroughs of virtual cityscapes to effect route
learning.

The London Travel Demonstrator supports travellers by
providing an environment where they can explore London, utilise
group collaboration facilities, rehearse particular journeys and
access tourist information data. These services are built on the
Distributed Interactive Virtual Environment (DIVE) software
from SICS. In this paper we describe how the application was
built, how it exploits the underlying collaboration services, and
how the platform provides for scaleability both in terms of the
large extent and detail of this application and in the number of
participants it can support.

Keywords
Collaborative virtual environments, travel applications, large-
model support, real-time rendering.

1. INTRODUCTION
With collaborative virtual environment (CVE) toolkits becoming
more common over the past few years, much research activity has
focused on providing scaleable systems. By scaleable we mean
both that the system supports large numbers of users and that
models that are large in size and extent can be accessed.

We have taken the approach of extending an existing CVE
system, DIVE [3], developed at the Swedish Institute of Computer
Science, to support scaleable applications through a number of
platform level extensions. Thus we have attempted to provide
scaleability without compromising the basic collaboration
services that exist within the platform.

1.1 Demonstrator Scenario
In order to demonstrate the scaleability of the resulting platform
we describe an application based around a scenario of virtual
travel to London. The broad aim of the demonstrator is to present
an application to a group of users enabling them to specify and
rehearse a meeting of any sort. This includes supporting the
selection of features at a given location (Hotels, Conference
Venues, etc.), using both abstract and facsimile based
information visualisation approaches. The demonstrator provides
users with the ability to navigate through a large virtual cityscape
(representing a real location). Their navigation is aided by a
number of dynamic information visualisation systems. A suite of
collaborative features aids the users in constructing, rehearsing
and participating in both virtual and real meetings.

The demonstrator consists of four main geometric and functional
layers:

• A 16x10km geometric model of the centre of London

• Collaboration services for use by groups

• Tourist information data visualisation service

• Simulations of public transport and crowds

The demonstrator integrates all these services into a single
coherent environment.

1.2 Background
Large numbers of users are usually supported by partitioning the
world into regions that are partially or totally occluded so that
events passing between those regions might be discarded or
filtered [9][1][10]. These regions may be tile based or may be
described on actual visibility relationships between areas of the
environment. In Section 4.3 we will describe how such
techniques have been employed within the DIVE platform in order
to support large numbers of users in complex interactive
environments.

There are two aspects to supporting a geometrically complex and
extensive model: maintaining a continuous view of the model for
the user and managing a model that might be too large to
maintain in memory [8]. Many techniques exist for speeding up
rendering of large models by partitioning models into separate
occluded areas or by pre-processing models to extract important
objects for a particular viewpoint (e.g. [7]). However such
techniques are often only applicable to well-structured models. In
the worlds we are supporting, the models often use a wide
variety of scene graph structures and do not lend themselves to
pre-processing. However we have taken some of the core ideas
behind frame-limited rendering and visibility partitioning and

have made them platform level services that any application can
take advantage of (see Section 4.2).

1.3 The COVEN Project
The Collaborative Virtual Environments (COVEN) Project
brings together twelve academic and industrial partners with a
wide range of expertise in CSCW, networked VR, computer
graphics, human factors, HCI and telecommunications
infrastructures [11]. COVEN is developing platforms for large-
scale virtual environments, and is demonstrating applications in
the general area of virtual travel. There are two main
demonstrator themes, the citizen application, a travel agency
service for the general public, and the business application, a
series of scenarios for the professional user. The London
Demonstrator described in this paper is the culmination of the
business application theme.

The project has undertaken research in novel interfaces for
virtual environments, human representation, crowd simulation,
collaboration services and network architectures for CVEs. The
DIVE platform extensions described in this paper are motivated
by much of that research.

2. PLATFORM AND SERVICES
2.1 DIVE Platform
DIVE [3], developed at the Swedish Institute of Computer
Science, is an experimental platform for the development of
virtual environments, user interfaces and applications based on
shared 3D synthetic environments. DIVE is especially tuned to
multi-user applications, where several networked participants
interact over the Internet. Started as a lab tool in 1991, DIVE has
evolved into a well-developed system running on many
platforms1.

1 DIVE runs on many UNIX platforms and on Windows NT. DIVE

3.3X was recently made available at http://www.sics.se/dive

2.2 Basic Services and Extensions
The demonstrator relies on many of the basic services provided
by the DIVE platform. These include support for live spatialised
audio, support for web integration and scripting using the TCL

language [12].

The most recent version of DIVE, 3.3X, includes the scalability
extensions described in this paper. These are: subjective views,
high-level application events, lightweight groups, rendering
extensions and database extensions. Although the extensions
have been made to support this application, they have been
written in an application independent way and should be
applicable to other large applications.

COVEN has also contributed to other extensions that are not
detailed in this paper. These include user-interface improvement,
wider geometry format support, mesh optimisation and
compression, plugin interface and Java API.

3. APPLICATION COMPONENTS
3.1 Model
The basic element of a travel demonstration must be a
representation of the destination. Our model of London
comprises a 16x10km segment of the centre of London that is
generated from 2D vector, building height and 2D image data
from the Cities Revealed data set2. The resulting model consists
of about 160MB of VRML data, not including texture map data.

The original maps are stored as 2D DXF files with several layers
each containing a different type of building structure. We are
primarily interested in building outlines, roads centre and
building spot height layers. The conversion stage consists of the
following major stages [19]:

• Identifying and repairing building outlines

2 The Cities Revealed data set is licensed from The
GeoInformation Group.

Figure 1: (a) The London model from the south-west. (b) A typical view of the model from just above ground level

• Building extrusion and roof-fitting

• Identifying and connecting road centre lines

• Fitting roads between buildings

• Creating pavements

Each building is composed of two or three layers, entrance,
middle and optional upper level and each has a roof. The
entrance and upper level are tiled laterally, but are repeated only
once vertically and have a fixed height. The centre layer is tiled
and/or slightly stretched to fill the intervening gap. Textures are
grouped together into matching sets and the set to apply to a
particular building is chosen by a few simple heuristics:
buildings with a small footprint are more likely to be brick, tall
buildings are likely to office blocks, and so on. The resulting
model is stored as a VRML1.0 model in 160 1km square tiles,
with each tile being built upon a segment of the Cities Revealed
aerial photograph for central London. Figure 1 shows an
overview of the model and an example view from ground level.

A few of the buildings in the model have been modelled at a
higher level of detail. In this demonstrator we used UCL as a
target destination for travel, though the services described in
later sections could be integrated in other parts of the model as
appropriate. The Pearson building is modelled in great detail,
with approximately 100 rooms, some containing furniture or
conferencing facilities (see Section 3.2). Figures 2(a), 3(a) and
3(c) show some examples views of this section of the model.

3.2 Collaboration Services
Conferences and meetings enable people to exchange information
and resolve issues in an optimal way. Virtual conferencing is an
interesting application area that allows reducing costs and saving
time by enabling distributed users to participate without the need
for (normally lengthy) travelling. However, in some situations,
physical contact is an essential human factor that can not be
replaced. In the London demonstrator, we address this issue by
allowing users to collaboratively plan a real meeting from their
separate geographical locations. The virtual meeting will take

place in a model of the building that will host the final meeting,
so that prospective visitors may get acquainted with the physical
building. The demonstrator uses a COVEN plenary meeting that
would take place at UCL as an example. The meeting takes place
in the virtual room that represents the targeted meeting room. As
a result, users will be able to rehearse their way to the main
conference room.

In this case the supporting tools can aid in the preparation of the
meeting. For example, an agenda for the real meeting can be
prepared virtually. Other cases include ensuring the correct size
of room for the number of participants, and if breakout sessions
emerge is there sufficient space/rooms for interested parties.
Providing the users with a representation of the actual intended
meeting space enhances such organisation aspects. To support
such a wide range of interactive meetings, a suite of collaborative
tools is offered.

The chosen metaphor consists of implementing virtual
counterparts of the different items that can generally be found in
meeting rooms. The meeting rooms stress a natural point where
the participants can get together, generally a table surrounded by
chairs. In real meeting situations notebooks, hands-out, and
slides are used, the rooms of the London demonstrator contain
text- and WWW- based counterparts that allow for collaborative
note taking and multimedia document visualisation. Virtual
documents are “personal” in the sense that they can be used by
one person at a time. However, placing them on a virtual
overhead projector allows for simultaneous visualisation at all
connected sites. Additional tools include virtual folders,
mailboxes, text communication board, PostIt notes, etc. Finally,
we use the metaphor of a virtual microphone to enforce turn
taking in collaborative situations that require a single speaker
and several listeners. One of the conferencing suites is depicted
in Figure 2. More detailed information about the conferencing
tools and their implementation can be found in [4].

Figure 2: (a) One of the conferencing suites inside the Pearson Building model (b) The tourist data visualisation tool. The
personal map can be seen on the top right of the main view window

3.3 Data Visualisation
The DIVE city visualisation tool has been developed to help users
select places of interest according to predefined requirements. To
enable this the tool retains a database of attributes (e.g. hotel
prices, star ratings, etc.) for each attraction type. Therefore a
database entry is maintained for each instance of the attraction
containing numerical measures for each attribute. The tool then
compares this to user requirements selecting the most
appropriate attraction according to the user’s selected acceptable
range.

In this demonstrator attractions may be chosen from pubs, hotels,
and theatres with the tool showing the appropriate attractions’
location on the city map in the base of the visualisation tool.
From this users may add attractions that relate to their
requirements to a selected list. This is performed after they are
happy with the results of the search. Subsequently a user may
then decide to go on and look for other types of nearby attraction,
the distance between the two affecting their selection of hotel, for
example.

For instance, consider a scenario where a visitor to the city
requires a hotel and theatre within a reasonable physical distance
of each other. The visitor only has a certain amount of money to
spend on the hotel, and requires it to have a reasonable AA &
RAC “star” rating. Similarly for the theatre they require one with
an adequate seating capacity to accommodate their party, and a
short distance between the theatre and the hotel. The city
visualisation tool can be used to help support this decision
process.

Using the city visualisation tool in the above scenario the user
may specify the attributes that a suitable hotel must posses. For
example, the user may select the world’s X-axis to reflect the
hotels’ RAC rating, the Y-axis to reflect the price, and the Z-axis
to indicate the AA rating (see Figure 2(b)). The acceptable range
of values that users are willing to allow the tool to use as a
criterion to select hotels should then be given to the tool.
Appropriate hotels that meet the user needs, within the chosen
selection range, are then added to the visualiser showing their
location on the visualiser’s base map. These may then be added
to the user’s selected list of attractions. Next the user may then
choose to look at theatres. Again they will select an acceptable

selection range for the tool’s theatre selection criterion, and input
their requirements for the theatre (e.g. price, number of seats,
etc.) into the tool setting the attributes to be reflected on the 3D-
graph axis shown in the world. After completing these steps the
user should amend the suggested theatres to their selected list of
hotels.

Upon updating their selected list the user may then turn on a
personal map that they can take away from the visualiser and
navigate around the city model to look at a 3D scale
representation of their chosen locations (in this case in London)
(see Figure 2(b)). Both the visualiser’s base map and the user’s
personal map show the locations of the attractions in the city.
Therefore the visualisation tool has helped the user choose the
most appropriate hotel that not only fits their selection
requirements (as all of the hotels on the selected list should do),
but also one that is within an acceptable distance from the
theatre. The user can visually assess these distances from the
spatial information provided on the base map. If more
information is required about a particular attraction to help the
user make their final selection, then the user may click on the
attraction’s icon on the map of the visualiser to display detailed
information from the database relating to the item.

Clicking on an attraction icon in the personal map will transport
the user to that location in the city model (the visualiser is itself
located above the city). The selected attractions’ location in the
city are represented via a large “pin” in the city model so that the
selected locations stand out while navigating the large city
model. The personal map remains with the user no matter where
in the city the user is located. A “you are here” pointer on
personal map shows the direction and position the user is
currently situated in respect to the city map and their selected
attractions. Throughout the user may choose to transport to
another selected attraction by clicking on icons in their personal
map.

The tool providing the interactive elements and user interface has
been implemented in DIVE with TCL/TK.

3.4 Simulations
The demonstrator includes three real-time simulations that
enhance the travel scenario. The first is a simulation of journey
on the London Underground that arrives at a station close to the

Figure 3 (a) Overview of the UCL front quad. The Pearson Building is the below and to the left of the center of the screen.
(b) View from a London Underground train. Two members of a crowd are visible. (c) Cut-away view of Room 127 in the
Pearson building showing the audience simulation situated in a seminar room.

UCL campus (see Figure 3(b)). This allows a UCL visitor to
rehearse the actual route from the station to UCL and through the
computer science department. Models of Heathrow Terminal 3,
the Heathrow Express train service and Paddington Station will
be integrated in the near future, and this will allow participants
to experience the journey from the airport to our department.

The second simulation is of crowds of people in the local area.
These can assist the lost traveller since they indicate major routes
through the city. Currently the simulation focuses on a small
crowd of 20-30 participants who follow routes in around the local
London Underground station and UCL campus. A couple of
members of a crowd can be seen through the window of the train
in Figure 3(b).

The final simulation component is of an audience in a seminar
room [13]. This has been integrated within one of the Pearson
building seminar rooms (see Figure3(c)). The purpose of this
simulation is to enable talk rehearsals for prospective conference
attendees, or for support of those who suffer from a fear of public
speaking.

All three simulations use holders (see Section 4.3) to limit event
distribution to only those interested participants that are close to
the simulation.

4. SCALEABILITY SUPPORT
Scaleability is enabled through extensions in three areas:
extended facilities for event and scene graph management,
extensions to the renderer to support constant frame-rate
rendering and database extensions.

4.1 Extended Facilities
4.1.1 Subjective Views
In traditional virtual environments each user is present in the
same virtual world, albeit from a different viewpoint. Users
cannot tailor their representation of the virtual scene or the
degree to which they are aware of other user's activities. This is
somewhat analogous to early 2D shared multi-user interfaces
where users were each presented with the same application
views. However, research in 2D interfaces has shown a strong
trend to support individual tailoring of the shared views to reflect
user demands. These lessons from 2D interfaces have been

integrated into DIVE, allowing individual users to have more
control over their view of the virtual environment. This provides
users with the ability to tailor the environment to suit their
working needs, and enables applications to address users on a
more individual basis.

These considerations have led to the implementation of
subjective views [14] in the DIVE platform, together with their
control from various interface levels such as the file format, the
behaviour interface and low-level C programming. Subjective
views allow tweaking the representation of individual objects for
(groups of) individual users. Additionally, subjective modifiers
describe independent effects that may be applied to any object’s
appearance. Examples of such modifiers are:

• Normal: View the object normally, i.e. no modifications;

• Invisible: The object should not be visible to this user;

• Transparent: Make the object transparent;

• Wireframe: Show the object in wireframe mode;

• Dim: The object should be visible but less obvious, such as
made darker;

• Bright: The object should be presented to the user and
emphasised within their visualisation by means such as
increasing its luminosity.

In the London demonstrator, we have used subjective views
extensively to perform visibility switching on a per-user basis. As
with most features of the platform, the subjective views
mechanism is interfaced with DIVE/TCL. This makes it possible
to use complex predicates to toggle object visibility at run-time.

4.1.2 High-level Application Events
DIVE is event based. Modifications applied to the database will
result in network messages that are distributed to connected
peers. An event will be generated both at the sender and the
receivers. Applications process can register to be notified of
particular events. In addition to a set of predefined system
events, such as user interaction, object collision, property
manipulations, DIVE offers a framework to generate and intercept
application-level events. These events can be triggered on any
object of the shared environment. They are typed using a string

Figure 4 Example of constant frame-rate rendering. From left to right: view on Onyx at 10fps, view on Onyx at 20fps, view
on O2 at 5fps.

and are supported by streaming mechanisms that let applications
to decide upon their content and organisation. These semantic-
rich events can be used to send commands to applications,
together with arguments and, thus, let applications define a
standardised communication protocol.

4.1.3 Lightweight groups
For data communication, any object of the DIVE database
hierarchy can be associated with a multicast group, called a
lightweight group. When a modification message concerning an
object is to be sent, we ascend the database hierarchy, starting
from this object and as soon as a multicast group is found, this
will be used as a communication medium. If no group is found
during the ascent, DIVE will use the default world group
associated to the top-most object. If the multicast group
associated to an object is a null group, that part of the hierarchy
will be local and modification messages will thus not be
distributed at all.

Lightweight groups can be associated orthogonally to the
hierarchy tree; i.e. several branches can be associated with the
same group. The lightweight group mechanisms are interfaced
and controlled from a high level of abstraction using the
DIVE/TCL scripts. This provides the platform with a flexible tool
that makes it possible to experiment with a variety of
application-dependent distribution schemes without requiring a
hard coding of the semantics into the platform.

DIVE sends continuous streams of data (i.e. audio and video)
using unreliable multicast. DIVE associates separate audio and
video multicast groups to each world. Additionally, lightweight
audio and video groups can be defined. The logic of lightweight
audio and video group selection is similar to that described above
for lightweight object groups.

4.2 Rendering Extensions
The London model is massive and from any viewpoint many
hundreds of thousands of polygons maybe seen. We have
experimented with renderers that aim to give a constant frame-
rate experience so that visual continuity can be maintained.

Although a technique such as occlusion culling would be
eminently suitable for street level locomotion about the city,
occlusion is not a general technique applicable to all models, and
even in this demonstrator we find that most time is spent above
roof height. For these reasons, we did not choose to integrate
occlusion culling into the platform because of its specificity.

A reasonable and more generally applicable technique is to
optimise the depth of the far clipping plane so that a frame-rate
target is met. When the rendering completes within the required
time the clipping plane is slowly moved outwards and conversely
the clipping plane is moved inwards when the rendering
overshoots the desired target. The change in depth is damped so
that the frame-time does not oscillate and objects do not pop on
and off.

This technique requires no prior knowledge of model structure,
although it is more successful when there are large numbers of
small or mid-sized objects rather than a few large objects. Figure
4 shows three example of the frame-rate limiting in action.
Figure 4(a) and 4(b) were taken on a R10000 Onyx with 196M

of ram and Infinite Reality graphics system. Figure 4(c) was
taken on an R5000 O2 with 128M ram.

For the densely populated interior areas of the model, specifically
the Pearson building of UCL, we have used an explicit,
conservative visibility technique. The model is not suitable for
computed visibility solutions such as those developed by
Funkhouser [7] since the model is not structured with the
required identification of cells and portals, nor would it be at all
simple to identify them automatically. However it is very easy to
identify large areas of mutual occlusion such as separate floors
and groups of rooms by hand. We have integrated tools into DIVE

itself that allow objects to be grouped together by hand and
identified as "cells". These cells can be turned on or off
depending on the user's location using the subjective views
capability (see section 4.1.1). Although the resulting visibility
relationships are much more conservative than an analytic
solution, they are simple for the scene author to describe, and
since this facility is available through DIVE/TCL, the types of
visibility relationship can be based on complex predicates.

The challenge we are now facing is incorporating other
extensions such as incremental rendering, visibility culling,
image based rendering and incremental level of detail control
into a single renderer in a generally applicable way [16].

4.3 Database Extensions
Given the size of the base model, only a small portion can be can
be kept in memory or rendered at one time so it must be stored in
paged tiles. The tiling provides a natural scoping of world events
since tile proximity can be used as a gross indication of mutual
awareness. Also, the tiles themselves are static objects in the
environment since we don't expect the buildings themselves to be
changed, or at least not very frequently.

These types of consideration led to the development of a world
structuring technique called holders. Holders are a database
abstraction that builds on top of the low-level lightweight groups
described in section 4.1.3. A holder is a unsynchronised portion
of the hierarchy that carries a URL or file information and a
multicast address. Holders are not loaded through the world
database mechanisms but are explicitly loaded by each peer. This
relieves another peer from having to serialise and send the state
of that portion of the scene graph. Events that are then generated
within the part of the hierarchy below a holder are only
distributed to parties connected to that holder.

Holders make it also possible to avoid distributing network
messages to other participants by using null groups. In this case,
all connecting peers will read the associated URL, and no local
change messages will be communicated. However this does not
mean that these portions of the hierarchy are static. An event
originating in the holder can be routed via a node at a higher
level of the hierarchy, outside the holder, and peers can on
reception of this high-level message make local changes to their
own copy of the holder as needs be. Such high-level events,
described in section 4.1.2, can encapsulate complex behaviour as
described in Figure 5 and we have used them for this purpose in
a number of situations. Note that holder connection and
management is interfaced to DIVE/TCL, which allows describing
their behaviour using scripts.

N
et

w
or

k

High-Level Messages
Peer1 Peer2

Figure 5: Semantically enriched application-level events can
be used together with holders to cut down radically network
traffic in some situations. This figure exemplifies how a few
high-level messages can generate a cascade of database
modifications simultaneously, instead of generating many
network packets describing the modifications.

For this demonstration, each map tile is placed under a separate
holder. The holders are loaded when the user collides with a
bounding sphere. Since this behaviour is scripted in DIVE/TCL,
more sophisticated look-ahead paging could be performed.
Individual tiles are loaded incrementally in order to maintain a
constant frame-rate by not locking out the rendering process.
Holders are also used within buildings where large areas of
occlusion occur as a first, crude visibility partitioning. In that
case, holders are used together with subjective view mechanisms
(Section 4.1.1) that toggle the visibility of large parts of the
model for individual users. Finally, holders are used to
encapsulate the simulations. For example, the crowd simulation
is contained within a holder. A high-level application event
(Section 4.1.2) is used to communicate current positions of the
crowd members, but each peer independently animates the walk
cycle, since there is no need to synchronise these animations
between peers.

All files used to initialise the content of the holders used in the
London demonstrator have been saved in the DIVE binary format,
a general format that had to be developed to support this
application. The binary format sits on top of the hierarchy
serialisation mechanisms for socket communication and this
format both significantly improves file-loading time and saves
disk space.

5. TESTING AND EVALUATION
The types of service that are integrated into the current DIVE

platform result from previous studies of people using CVE
systems [17][18]. The London Demonstrator has been refined
both by our experience in a series of network trials and focused
usability evaluations.

5.1 Network Trials
Network trials form a large part of the COVEN Project's work.
From March to August 1999 roughly 20 network trials were
undertaken, with the number of participants varying from 4 to 16.

Figure 6 shows a snapshot from one of these trials involving
eight participants taking part in a one-hour session based on a
conference planning scenario. The eight participants were
composed of four groups of two with groups in London,
Nottingham, Lancaster and Stockholm. Participants were using
Linux, SGI Impact and SGI O2 computers. The trial was held

over the Internet in mid-afternoon when congestion would have
been expected to be reasonably high. The details of how such
trials were supported using the facilities of the DIVEBONE, an
application layer multicast bridge, can be found in [6].

Figure 6: A group of users meeting in UCL's front quad.

 This trial was very successful, in that the application supported
the eight mutually aware participants and they were able to
access the collaborative facilities provided. Despite the range of
machines used, the scalability extensions ensured that the
experience was interactive and responsive for all participants.
Indeed larger numbers of users were supported on other
occasions, and we fully expect to be able to support a few tens of
people simultaneously in this application. With most other CVE
systems and with previous versions of DIVE, it simply wouldn't
have been possible to host such an application because of the
lack of rendering and database control with extremely large
models.

5.2 Usability Evaluation
The format and tasks undertaken during the network trials are
designed to answer certain questions about the usability of the
3D user interface and application components. We have found,
for example, that the spatialised audio greatly enhances the
ability of the users to communicate with one another since
speakers can be identified by audio location.

We have, in parallel, also been applying prototype methods for
usability inspection of CVE applications [15]. These have served
to improve aspects of the interface such as object representation,
menus, text chat interface, usage of private audio groups and
avatar representation.

 Certain facilities such as the audience simulation are the subject
of more in-depth studies [13], and the general area of small-
group collaboration is one that we have been studying using
elements of this application [17][18].

6. CONCLUSIONS
The COVEN project has investigated several aspects of CVE
design, implementation and evaluation [11]. The resulting
experience has been applied to the design and creation of the

COVEN/DIVE platform that integrates many novel services and
enables a large class of CVE application that wasn't previously
possible. With the London Demonstrator we have shown new
levels of scaleability whilst retaining core collaborative services.

• The demonstrator successfully integrates several
applications into one coherent space. The model itself
provides a space within which to integrate other travel
information or data visualisation services.

• The resulting application is interesting from a user's
perspective and provides broad functionality to support a
general class of travel applications.

• Scaleability is achieved both in terms of numbers of users
and size of the model

• Rendering and database extensions are integrated at a
system level so are generally available to other applications
and other large models.

• Scaleability support is provided in a flexible manner
through the scene scripting language.

Future work will concentrate on further scaleability extensions.
Foremost amongst these will be the integration of further
geometric visibility techniques, more advanced rendering
management and geometry streaming.

7. ACKNOWLEDGMENTS
This research was funded by the European ACTS programme
(COVEN AC040). We would like to thank all the project
members whose work is reflected in the design and
implementation of the London Demonstrator. We would also like
to thank those who took part in the network trials and those who
participated in the usability inspections. The crowd simulation
was implemented by Bernhard Spanlang whilst he was visiting
UCL.

8. REFERENCES
[1] Barrus, J., Waters, R. and Anderson, D. Locales: Supporting

Large Multiuser Virtual Environments, IEEE Computer
Graphics & Applications, Vol. 16, No. 6, 1996, 50-57.

[2] Floyd, S., Jacobson, V., McCanne, S., Liu, C.-G. and Zhang
L. A Reliable Multicast Framework for Light-Weight
Sessions and Application Level Framing, in Proceedings of
ACM SIGCOMM 95 (New York, ACM Press, 1995), 242-
256.

[3] Frécon, E., and Stenius, M. DIVE: A scaleable network
architecture for distributed virtual environments, Distributed
Systems Engineering Journal, Vol. 5, No. 3, 1998, 91-100.

[4] Frécon, E., Avatare-Nöu, A. Building Distributed Virtual
Environments to Support Collaborative Work. 1998 ACM
Symposium on Virtual Reality Software and Technology
(VRST'98), Taiwan.

[5] Frécon, E., and Smith, G. Semantic Behaviours in
Collaborative Virtual Environments, Proceedings of 5th

Eurographics Workshop on Virtual Environments, 1999.

[6] Frécon, E., Greenhalgh, C. and Stenius, M. The DIVEBONE -
An Application-Level Network Architecture for Internet-

Based CVEs, ACM Symposium on Virtual Reality Software
and Technology (VRST '99). University College London,
London, Uk. December 1999.

[7] Funkhouser, T.A., Sequin, C.H. and Teller, S.J.
Management of Large Amounts of Data in Interactive
Building Walkthroughs, Proceedings of 1992 Symposium on
Interactive 3D Graphics, Computer Graphics, 11-20, ACM
Press

[8] Funkhouser, T. Database Management for Interactive
Display of Large Architectural Models, Graphics Interface
'96, Canadian Human-Computer Communications Society.

[9] Greenhalgh, C. Large Scale Collaborative Virtual
Environments, to be published spring 1999, London,
Springer-Verlag.

[10] Macedonia, M., Zyda, M., Pratt, D., Brutzman, D. and
Barham, P. Exploiting Reality with Multicast Groups: A
Network Architecture for Large-scale Virtual Environments,
in Proceedings of IEEE Computer Graphics & Applications
(1995), 38-45.

[11] Normand, V. et al. The COVEN Project: Exploring
Applicative, Technical and Usage Dimensions of
Collaborative Virtual Environment, Presence: Teleoperators
and Virtual Environments, 8(2), 1999.

[12] Ousterhout, J. Tcl and the Tk toolkit. Addison-Wesley,
Reading, MA, 1994, ISBN 0-201-63337-X.

[13] Slater, M., Pertaub, D. and Steed A. Public Speaking in
Virtual Reality: Facing an Audience of Avatars, IEEE
Computer Graphics and Applications, 19(2), March/April
1999, p6-9.

[14] Smith, G. and Mariani, J. Using Subjective Views to
Enhace 3D Applications. ACM Symposium on Virtual
Reality Software and Technology (VRST '97). ACM Press.
Swiss federal Institute of Technology (EPFL), Lausanne,
Switzerland. September 1997. Pages 139-146.

[15] Steed, A. (ed) Usability Evaluation of the Online
Demonstrators, COVEN Deliverable 3.5A, available at
http://www.cs.ucl.ac.uk/research/vr/Coven.

[16] Steed, A. and Frécon E. Building and Supporting Large-
Scale Collaborative Virtual Environments, Proceedings of
UKVRSIG'99.

[17] Steed, A., Slater, M., Sadagic, A., Bullock, A. and Tromp,
J. Leadership and Collaboration in Collaborative Virtual
Environments, Proceedings of IEEE Virtual Reality '99
Conference, Houston, Texas, March 1999.

[18] Tromp, J., Steed, A., Frécon, E., Bullock, A., Sadagic, A.
and Slater M., Small Group Behavior Experiments in the
COVEN Project, IEEE Computer Graphics and
Applications, Vol. 18, No.6, Nov/Dec 1998, 53-63.

[19] West, J. MSc Thesis, Department of Computer Science,
University College London, 1998.

