
Using a P300 Brain Computer Interface in an

Immersive Virtual Environment

Michael Donnerer

m.donnerer@cs.ucl.ac.uk

Anthony Steed

a.steed@cs.ucl.ac.uk

Department of Computer Science, University College London

Abstract

Brain-computer interfaces (BCIs) provide a novel form of human-computer inter-

action. The purpose of these systems is to aid disabled people by a�ording them the

possibility of communication and environment control. In this study we present exper-

iments using a P300 based BCI in a fully immersive virtual environment (IVE). P300

BCIs depend on presenting several stimuli to the user. We propose two ways of embed-

ding the stimuli in the virtual environment: one that uses 3D objects as targets, and a

second that uses a virtual overlay. Both ways have been shown to work e�ectively with

no signi�cant di�erence in selection accuracy. The results suggest that P300 BCIs can

be used successfully in a 3D environment, and this suggests some novel ways of using

BCIs in real world environments.

1 Introduction

The de�nition of a brain-computer interface (BCI) found in Wolpaw et al. (2002) is �A

system for controlling a device e.g. computer, wheelchair or a neuroprothesis by human

intention which does not depend on the brain's normal output pathways of peripheral nerves

and muscles�. The term was �rst introduced in Vidal (1973) where an interface based on

electroencephalographic (EEG) signals was proposed.
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The main use of BCIs is to provide a means of communication for people who are oth-

erwise unable to do so. One example of this would be to enable patients with locked-in

syndrome, whereby nearly all voluntary muscles are paralysed, to communicate with the

outside world again. At the moment patients su�ering from locked-in syndrome are often

only able to communicate through eye movements or blinks. Such people could use a BCI

to e�ciently use a computer or other devices. A future, though far o�, goal of BCI research

is to create a communication channel between human and computer that is much faster and

more intuitive to use than any current technology.

It is possible to split EEG-based BCIs into four categories based on the EEG features they

use: induced changes of oscillatory activity (for examplePfurtscheller and Neuper (2001)),

slow cortical potentials (for exampleBirbaumer et al. (1999)), steady-state evoked potentials

(SSVEP) and P300 evoked potentials. Induced changes of oscillatory activity and slow

cortical potentials are most commonly limited to binary or quaternary choice.

As the name suggests P300-based BCIs are based on the P300 brainwave, which was �rst

discovered by Sutton et al. (1965). It can be evoked by either a visual or auditory stimulus

that a user has to concentrate upon while di�erent non-target stimuli are also presented. In

Picton (1992) the characteristics of the P300 signal are described more closely. Generally

it is generated when an occasional target stimulus is detected by the user among several

non-target stimuli. This is called an �oddball� paradigm. To elicit the stimulus the subject

has to be actively engaged and the amplitude is larger when the stimulus is less probable.

We are interested in examining the use of a BCI within immersive virtual environments

(IVEs). In particular we wanted to integrate the P300 stimuli directly into the 3D envi-

ronment. If a BCI could be demonstrated in such a way, it would not only have potential

bene�ts for interaction research in IVEs, but also for the development of next-generation

BCIs that exploit the real world around the user. For example, an interesting application

scenario for a BCI would be to allow the user to control his real world environment. It could

be used to navigate the environment in a wheelchair, to select a book in a bookshelf, to turn
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on the TV and change the channel, et cetera. This could be achieved using an augmented

reality style interface, either by interacting with a virtual environment reconstruction, or as

a live overlay. Studying BCIs in IVEs provides a test of the feasibility of such techniques.

There are many questions about the feasibility and appropriate types of integration of a

P300-based BCI in virtual environments. In this paper we discuss a series of feasibility pilot

trials and a main trial that led to the establishment of two paradigms for using a P300-based

BCI in virtual environments - the Object Flash paradigm and the Tiles paradigm, which

utilizes a virtual overlay. In addition to that, a third paradigm called �36 Spheres� is used

for calibrating the system and comparing it to other types of P300-based BCI.

In Section 2 we discuss related work on P300-based BCIs and virtual environments.

Section 3 discusses the general setup of our integration of the BCI in an IVE, and the

paradigms that we evaluated. Section 4 then discusses pilot and feasibility trials, and Section

5 a more substantial trial. Section 6 then concludes and discusses the potential for future

work.

2 Related Work

2.1 P300-based BCI

Farwell and Donchin (1988) presented the �rst usable brain computer interface based on the

P300 signal. They created a 6x6 matrix which was populated with letters and numbers.

The rows and columns were then �ashed and the users asked to concentrate on a matrix

element and count the number of �ashes. Thus a P300 signal was generated whenever a

row/column was �ashed that contained the element the user was concentrating on. Through

this, the user was able to spell arbitrary words and sentences. Both online and o�ine signal

detection were tried. In the online condition a rate of 2.3 characters/min was achieved in an

experiment with 4 healthy subjects.

There are many in�uences on the e�ciency, i.e. input rate achievable, on P300-based BCI
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paradigms. The di�culty of discriminating the target stimulus from the background stimuli

in�uences the amplitude of the P300. According to Squires et al. (1973) if the di�culty is

too high this leads to a decrease in user con�dence that the distinction is correct which leads

to a smaller amplitude of the P300 wave. At the same time it has been shown in Hillyard

et al. (1971) that a too easy task can also decrease the amplitude. This might be explained

by the fact that the mind may stray to other matters if it gets bored. According to Kutas

et al. (1977) the amplitude of the P300 wave did not change with the semantic complexity

associated with a task but it did in�uence the latency of the wave. These results suggest

that 3D stimuli may need to be carefully designed.

At the moment the exact mechanisms involved in the generation of the P300 wave are

still unknown and its precise purpose is still unclear. It is known that it is in�uenced by

alcoholism, schizophrenia, autism and other conditions. Further work on all the criteria

in�uencing P300 elicitation is still needed and this work tries to address some of them.

Ho�mann et al. (2008) did a study using a six choice P300 system using �ve severely

disabled subjects and four able-bodied subjects. The e�ects of using Bayesian Linear Dis-

criminant Analysis (BLDA) and Fisher's Linear Discriminant Analysis (FLDA) for signal

processing as well as the e�ects of varying the number of EEG electrodes used were inves-

tigated. Four of the disabled subjects and all of the able-bodied subjects achieved commu-

nication rates and classi�cation accuracies superior to Piccione et al. (2006) and Sellers and

Donchin (2006). It was found that using more than 8 electrodes resulted only in a small

positive increase in BLDA performance and in a decrease in FLDA performance. It was also

noted that muscle activity can cause large amounts of artifacts in the EEG recordings.

2.2 P300-based BCI within Virtual Environments

So far there has been little research in the area of using P300-based BCIs in virtual environ-

ments (VEs) and even fewer studies have looked at IVEs. As far as we are aware no previous

study has investigated the use of a P300 BCI in a CAVE�-like environment.
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Bayliss and Ballard (1999) present an experiment in virtual reality using head-mounted

displays. In their experiment subjects were situated in a mock-up of a go-kart and asked to

drive through a virtual environment while stopping at red stoplights. The hypothesis was

that the red stoplights, being less frequent than yellow and green stoplights, would excite

a P300 wave. The EEG data of the subjects was captured and analysed using correlation,

independent component analysis, a Kalman �lter and a robust Kalman �lter. The red lights

did excite a P300 wave and the robust Kalman �lter gave the best results. One should note

that this study used o�ine analysis only, thus the presence of a P300 was evaluated but it

was not used for control in the environment. This aspect was added in Bayliss (2003) where

subjects were able to control a virtual apartment. To achieve this, semi-transparent spheres

appeared for a short time in front of �ve controllable items to provide a stimulus.

Besides using a normal computer screen the scenario was also evaluated using a head

mounted display. No signi�cant di�erence was found between the two conditions. This

study showed that it is indeed possible to use a P300-based BCI for control in a virtual

environment.

The only other study we are aware of using a P300 BCI within a virtual environment is

Piccione et al. (2008). However, the study did not utilise a CAVE�-like environment but

rather a �3D-view projection display�. Details of the display are unfortunately not given in

the study so it is not clear if this is an immersive display. In the study four arrows were added

to a virtual environment. By counting the number of times a particular arrow �ashed the user

was able to navigate in the direction the arrow pointed. The study evaluated di�erent arrow

models varying in colour and placement and di�erent �ash times (70ms and 150ms). They

found no signi�cant di�erences between these conditions. They also compared the virtual

environment to a simpler 2D representation, which contained four 2D arrows. They compared

the di�erence between the virtual environment conditions and the 2D condition by computing

an �ra� index. This index represented the sum of absolute di�erences between target and

non-target brainwaves recorded. The ra index of the 2D condition is signi�cantly higher
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than the ra indexes of the virtual environment conditions. Unfortunately, it is not noted if

this di�erence had an impact on selection accuracy. Furthermore, the study showed that no

session-by-session improvement in performance occurred, suggesting that user performance

cannot be improved by learning or training.

A hybrid approach was presented in Edlinger et al. (2009). In it users were able to

control a virtual apartment presented on a stereoscopic Powerwall. This system was not

controlled through stimuli in the virtual apartment though. Instead a control matrix was

used, which was displayed on a separate screen in 2D. The system utilized multiple control

masks, thus allowing many control elements (navigation to rooms, music, windows, heating

system, television, etc.). The study is interesting as it presents a practical approach for

controlling real world environments by out�tting the user with a separate display to be used

as a �remote�.

There also have been studies integrating BCIs that are not based on the P300 brainwave

with virtual environments. One of these is Lalor (2005) which used steady state visual evoked

potential for binary control in a visually elaborate 3D game. The game was presented to the

subject on a large screen that did not use stereoscopic display technologies. The goal was to

keep a virtual character in balance by either looking at a left or right checkerboard control.

It was found that the performance of the BCI was fairly robust against the distracting visual

stimulation created by the game.

Similarly Lotte et al. (2008) presented a study �out of the lab�. In it users were asked

to �use the force� (i.e. a motor imagery based BCI) to lift a model of a spaceship in a 3D

environment (non-immersive, non-stereoscopic). 21 naive subjects who were untrained in

the use of motor imagery were used. The experiment used only a single EEG channel and

showed that some subjects were able to e�ectively use the BCI with no training.

Furthermore, Leeb et al. (2006) showed that it is possible to move through a virtual envi-

ronment in a CAVE�-like system through the use of a motor imagery based BCI. Touyama

et al. (2008) evaluated steady-state visual evoked potentials in a CABIN environment, which
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consists of a virtual reality created through the use of �ve screens. In the experiment the

users could choose between two virtual buttons place to the right and left of the user, �ick-

ering at di�erent frequencies. The system could classify the two buttons with an accuracy

rate of about 70-80%.

3 P300-Based BCI Integration

3.1 System Integration

The overall system setup can be seen in �gure 1. The particular IVE system being used was

a ReaCTor (SEOS Ltd., West Sussex, UK) system. It consists of three back-projected 3m by

2.2m walls to the left, right and front of the user together with a 3m by 3m front-projected

screen on the �oor. Stereo shutter glasses are used to separate the left and right eye images,

which are displayed at 45Hz each. The user's head position is tracked through an Intersense

IS-9001 system, which is connected to an SGI Onyx2, which for these trials only serves

tracking data. The tracking information is then passed on to the ClusterMaster computer,

which is equipped with 2GB Ram and dual 1.8GHz Intel processors running Windows XP.

ClusterMaster executes our software for displaying the virtual environments. The software

was written using VRMedia XVR2. The XVR application on ClusterMaster delegates the

rendering to the cluster slaves. Each cluster slave is equipped with 1GB RAM, a single

2.7GHz Intel processor and a GeForce Quadro 5600 graphics card and runs Windows XP.

During the experiments the users were seated on a chair located about 60cm from the

back side of the IVE equidistant to either side wall. A g.Mobilab+ device transmitted the

EEG-data via Bluetooth to the portable computer positioned behind the user, which was

running the signal processing and control code. This in turn sent instructions to the XVR

program on ClusterMaster via a local network connection.

1http://www.isense.com/
2http://www.vrmedia.it
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Figure 1: Systems diagram for our CAVE�-like system

Signal processing was handled by a modi�ed g.tec P300 speller3 using linear discriminant

analysis. The hardware used consisted of a g.tec g.Mobilab+ EEG device with active elec-

trodes powered by a g.GAMMAbox. Eight electrodes with one reference and one ground

were used. The electrodes were mounted on Fz, Cz, P3, Pz, P4, PO7, Oz and PO8 (accord-

ing to the extended 10-20 system presented in Jasper (1958)) with reference mounted on the

right ear lobe and ground mounted on the forehead (AFz).

3.2 P300-Based BCI Paradigms

Three di�erent paradigms were investigated: 36 Spheres, Object Flash and Tiles. They can

be seen in �gures 2, 3 and 4, respectively. 36 Spheres is a straightforward �translation� of

the Farwell and Donchin (1988) speller into a virtual environment. The main di�erence

between Farwell and Donchin (1988) and 36 spheres and our other paradigms is that we

only �ash a single object at a time instead of a whole row/column. We chose this because

we thought it would make for an easier translation into a virtual environment, where it

can be di�cult to identify obvious choices for mapping rows/columns. A solution based on

multiple object might promise higher selection throughput and would thus be an interesting

3http://www.gtec.at/service/Tutorials/P300SpellerwithgUSBamp.pdf
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Figure 2: Object Flash Scene - a cube is currently being �ashed

Figure 3: 36 Spheres Scene - a sphere is currently being �ashed

target for future research. In the 36 spheres paradigm, 36 spheres are arranged in a regular

grid. Each sphere can �ash in colour. The closest spheres were about 3.5 m away from the

user with a side of the rectangle formed by all spheres measuring approximately 2m. The

spheres are slanted by 45 degrees, such that rows further away are higher. We only used 36

Spheres for the generation of a classi�er for the other two scenes. This choice was made as

36 Spheres proved to work quite well for this purpose in our pre-trial. To generate a classi�er

the participants were asked to count the number of �ashes on each sphere in the bottom row

in turn - 16 �ashes per sphere were used.
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Figure 4: Tiles Scene presented to a subject in the IVE. Due to the long shutter time of
the camera multiple left and right eye images are seen in the picture and thus two tiles are
visible at the same time.

Object Flash takes 36 Spheres one step further. Instead of having uniform objects ar-

ranged in a regular grid, cubes, spheres, penguins, a table and a fence are arranged in an

irregular way. The scene features some highly visually cluttered areas, especially around

the table-top. The closest object is about 6.5m away from the user's head, with the table

approximately a meter high (life size). The stimuli are provided by �ashing the individual

objects in red. In �gure 2 one of the cubes on the table is currently being �ashed.

Tiles uses the same basic scene as Object Flash. The di�erence is the way the P300

stimulus is elicited. Instead of �ashing the individual objects, the user looks onto the scene

through a virtual overlay appearing as a segmented window. The window is segmented

into 36 di�erent areas, in each area a �tile� can appear randomly. The P300 brain wave

is thus elicited by having the user concentrate on the appearance of a tile in a particular

segment. Each segment also provides a focus point at the center consisting of a small cube.

Furthermore, the segments are separated by a visible grid. This setup is a direct result of our

pre-trial, which also evaluated di�erent possibilities (see section 4). The grid is positioned

about 1.5m away from the user, lying roughly in the plane of the front screen, being about
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2x2m in size.

As mentioned previously a classi�er was generated using 16 �ashes, all other conditions

used 8 �ashes per object. One object was �ashed at a time. The scene presented to the user

had hidden objects that were also �ashed, thus yielding 36 possible objects in every scene.

These hidden objects could be selected unintentionally. Their main purpose was to make the

timing between the di�erent paradigms comparable. Also they a�ord us the possibility to

investigate the di�erence between random errors and errors caused by the user inadvertently

reacting to a non-target stimulus. The �ashes in all scenes were pure red, although in the

Tiles paradigm they appeared dark red due to the presence of shadows from the grid. After

signal processing, selection results were displayed in two di�erent ways. In Object Flash the

selected object was �ashed for two seconds using a green �ash. In Tiles the selected tile was

displayed for two seconds using a green tile.

The �ash-time was set to 45ms in all conditions, with the actual time varying slightly

depending on the current frame rate. We measured the frame rate during a trial run. On

both Object Flash and Tiles the framerate stabilised at around 20 FPS per eye.

Each �ash is delivered 70 ms after the previous one, giving a �dark time� of 25ms. Of

course, the actual display timings vary due to the jitter resulting from the network connec-

tions and the fact that a frame rate of 20 FPS a�ords only a timer granularity of 5ms. Once

all the �ashes necessary for one selection have been displayed, the system processes the data

and provides a result in about a second. There is a break of 3 seconds after all the �ashes

for one round have been shown. During this break the selection result is displayed for 2

seconds. Using 8 �ashes per object, each selection takes 20 seconds. Adding the time used

for displaying the result, one selection takes 23 seconds.

3.3 Jitter and Latency

The complicated system setup involving multiple computers and networks as well as a rela-

tively low frame rate of 20 FPS in the experiment introduced additional jitter and latency.
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As it is crucial for correct system operation to be able to correlate the time a stimulus was

displayed with the time a P300 brainwave was detected, jitter and latency can negatively

impact performance. In our pre-trial a single subject test suggested that a latency of up

to 100ms and jitter of up to 20ms can be tolerated by the signal processing code without

signi�cantly impacting performance. The test was performed by passing the network con-

nection through a proxy which could delay the packets for an adjustable amount of latency

and jitter.

To further combat latency we modi�ed the signal processing code to account for a variable

amount of latency. In our experiments this was set to 40ms. This value was chosen due to

two reasons. First, the end-to-end latency of the system was measured to be 64ms using

the method presented in Steed (2008). The method cannot be used directly to estimate the

latency of the whole bio-processing system as we have to discount the latency of the tracker

and add the latency introduced by the additional network connections. Second, a value of

40ms proved to be e�ective in our pre-trial. Therefore, as our latency tests indicated that

a small amount of latency is �ne, we decided to run the system at 40ms latency correction.

Assuming that the actual latency is in the area of 40-80ms, 40ms is a good choice as it

will not correct more latency than actually exists, while still reducing the actual latency

considerably.

4 Pilot Trials

Before the main experiment a series of pilot trials were run to �nd good settings for the

stimuli for the 36 Spheres, Object Flash and Tiles paradigms. These pilot trials used both

immersive and non-immersive settings. There are several factors that could bias the results,

and we sought to identify any obvious confounding factors. For example, the size, distance

and colour of the objects could all potentially a�ect the e�ciency of the BCI. If the e�ciency

would be too greatly a�ected, then the aim of integrating P300-based BCI in to a real-world
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subject white red mean

1 6 6 6
2 5 6 5.5
3 6 6 6

mean 5.7 6 5.8

Table 1: Number of spheres correctly selected in 36 Spheres with 6 tries in the non-immersive
setting

setting where such factors can not be controlled, is more likely to be unachievable.

Three subjects were used in the non-immersive setting and three in the immersive setting.

Each experiment lasted for approximately 50 minutes and subjects were not compensated

for their time. Non-immersive participants did all three paradigms whereas immersive par-

ticipants did only the 36 Spheres and Object Flash paradigms. The reason for this is that

at the time of the pilot trials we had not created the immersive tiles condition but instead

tested other conditions which we thought to be superior. The results for these conditions

were not very good so we decided to implement an immersive tiles condition instead. In ad-

dition to that, both groups of subjects did further tests, which do not relate to the paradigms

presented in this paper.

In the 36 Spheres we tested the di�erence between a white and a red �ash. As the spheres

themselves are white, the white �ash is much lower in contrast than the red �ash. We wanted

to investigate whether this di�erence in contrast would in�uence selection accuracy. The

results showed only a small di�erence which can be seen in table 1. One subject expressed

a preference for the white �ash, describing the red �ash as �mesmerizing�. The two other

subjects indicated that they preferred the red �ash as it was easier to detect.

In the immersive condition di�erent sizes for the spheres and di�erent distances were

evaluated. The results can be seen in table 2. The results indicate that large spheres (about

30cm in diameter) close to the user (about 50cm away) provide lower accuracy rates. Due

to this we did not use this close condition in the main trial.

The results for Object Flash in the non-immersive condition can be seen in table 3. Table

4, 5 and 6 show the results for Object Flash in the immersive scene for a close (about 80cm
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Subject far close-big small mean

4 2 1 4 2.3
5 3 0 6 3
6 6 6 6 6

mean 3.7 2.3 5.3 3.8

Table 2: Results for selecting 6 spheres in an immersive environment

subject penguin table cube mean

1 3 1 3 2.3
2 3 2 2 2.3
3 3 1 2 2

mean 3 1.3 2.3 2.2

Table 3: Number of objects successfully selected in the Object Flash paradigm with 3 trials
in the non-immersive condition

from the user), medium (about 3m) and far condition (about 6.5m).

Finally, table 7 shows the results for the non-immersive version of Tiles, which has the

same functionality as the immersive version but a slightly di�erent look. A mean accuracy

of 2.7 out of 3 selections was achieved, which is higher than the mean accuracy for Object

Flash (0.9).

5 Main Trial

The main hypotheses for the study are that both the Object Flash and Tiles paradigm can be

used successfully in an IVE with the Object Flash paradigm providing lower accuracy rates

for highly cluttered areas. At the same time Tiles should be immune to visually cluttered

environments and provide similar or higher performance as Object Flash.

subject penguin table cube mean

4 1 0 0 0.3
5 1 0 0 0.3
6 2 1 3 2

mean 1.3 0.3 1 0.9

Table 4: Results for Object Flash Immersive under the close condition with 3 trials
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subject penguin table cube mean

4 0 0 0 0
5 3 0 1 1.3
6 3 0 0 1

mean 2 0 0.3 0.8

Table 5: Results for Object Flash Immersive under the medium condition with 3 trials

subject penguin table cube mean

4 0 0 0 0
5 3 0 1 1.3
6 3 0 1 1.3

mean 2 0 0.6 0.9

Table 6: Results for Object Flash Immersive under the far condition with 3 trials

subject tile 1 tile 2 tile 3 mean

1 3 3 3 3
2 1 2 3 2
3 3 3 3 3

mean 2.3 2.7 3 2.7

Table 7: Number of cells correctly selected in the Tiles experiment with 3 trials in the
non-immersive setting
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5.1 Subjects and Methods

The main trial involved seven participants in the age range of 20-25 with two female and

�ve male subjects. Each experiment took 40 minutes and subjects were not compensated.

Each participant was �rst asked to generate a classi�er by selecting the bottom six spheres

in the 36 Spheres condition. It was chosen to use the bottom row of spheres as it is easy

for users to select them as they don't have to search for the next sphere as it will be the

one immediately to the right of the current sphere. In addition to that the bottom row was

closest to the user making the perceived size of the spheres bigger than that of the spheres

in the other rows, helping participants more easily see a �ash. We decided against creating

multiple classi�ers for the di�erent paradigms even though this might have improved results.

Our main worry was that the lower and more varied frame rate in the other paradigms could

impact the P300 classi�er generation negatively.

Participants were tested on the Object Flash and Tiles paradigm in randomized order.

The positions of all the objects and the tiles were kept the same for all participants. In

the Object Flash condition the participants were asked to select three objects - the large

penguin, the table and the cube to the left of the table �ve times each. Each object was

selected �ve times before the next object was selected. The order the objects were asked to

be selected in was randomized. In the Tiles paradigm the participants were asked to select

15 tiles, starting at the second row from the top at the left, moving one to the right after

each selection (no matter whether the selection was successful or not), wrapping around to

the next row when the end of a row was reached. One of the tiles was very di�cult to see as

it was directly in front of a very dark area of the large penguin. All other tiles were clearly

visible.

After the experiment the participants were asked to �ll out a simple questionnaire. The

�rst question asked how easy it was to concentrate on a particular object (large penguin,

table, box, tiles) regardless of the result achieved. It was possible to choose between the

following answers: very easy, easy, neutral, di�cult, and very di�cult. The second questions
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subject table penguin box mean

1 1 5 5 3.67
2 0 1 1 0.67
3 5 5 5 5
4 0 1 4 1.33
5 0 2 2 1.33
6 3 2 0 1.67
7 2 5 4 3.67

mean 1.57 3.00 3.00 2.48
variance 3.62 3.67 4

Table 8: Objects successfully selected in the Object Flash paradigm using 5 tries

asked how much the user enjoyed selecting the penguin, table, box and tiles and provided

the following answer possibilities: a lot, a bit, neutral, not really, not at all.

5.2 Results

Table 8 shows the results for selecting the di�erent objects in the Object Flash scene. The

di�erences in selection success rates between the table, penguin and box are not signi�cant

(p<0.05). Table 9 shows the results for the Tiles paradigm compared with the overall results

of the Object Flash paradigm. Again the di�erence is not signi�cant. The results from the

questionnaire are in table 10 and 11. The �ve di�erent answer possibilities were assigned

numeric values from +2 to -2. Table 10 shows the results for the perceived easiness. Using

a 3-way ANOVA on table, penguin and box with a Bonferroni correction and p<0.05 the

di�erence between the table and the penguin is signi�cant with the penguin being �easier�

to select. Without the Bonferroni correction the penguin was also signi�cantly �easier� to

select than the box. Table 11 shows participant enjoyment the di�erent conditions. Using

a 3-way ANOVA on table, penguin and box with a Bonferroni correction and p<0.05 the

di�erence between table and box is signi�cant with the box being more �enjoyable�. Without

the Bonferroni correction the di�erence between penguin and table is signi�cant as well with

the penguin being more �enjoyable�.

Table 12 presents the results for selecting the �rst tile and the tile which was hard to
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subject Object Flash Tiles

1 11 13
2 2 2
3 15 13
4 5 11
5 4 11
6 5 6
7 11 13

mean 7.57 9.86
variance 22.62 18.14

Table 9: Results of Object Flash compared with Tiles using 15 tries

subject large penguin table cube tiles

1 2 0 1 1
2 2 -2 1 2
3 2 1 1 0
4 1 1 2 0
5 2 -2 -1 2
6 1 0 0 1
7 2 -2 1 2

mean 1.71 -.57 .71 1.14
variance 0.24 1.95 0.9 0.81

Table 10: Results of the questionnaire on how easy was it to concentrate on the particular
objects

subject large penguin table cube tiles

1 2 -1 1 1
2 1 -2 1 1
3 2 0 0 -1
4 -2 0 2 0
5 2 -2 2 2
6 2 -1 -1 -1
7 0 -2 1 2

mean 1 -1.14 .86 .57
variance 2.33 0.81 1.14 1.62

Table 11: Results of the questionnaire on participant enjoyment of the conditions

18



subject �rst tile �di�cult� tile

1 1 0
2 0 0
3 1 0
4 1 1
5 1 0
6 0 0
7 1 0

mean .71 .14
variance .24 .14

Table 12: Comparison of the selection rate for the �rst tile in the 2nd row and the �di�cult�
tile which was hard to see

see. The di�erence between the two is signi�cant (t-test, p=0.03) with the hard to see tile

providing less successful selections.

For the tiles condition we also did an analysis of the mis-classi�cations. 11 of the 38

mis-classi�cations are on a neighbouring letter and 27 aren't. On average each tile in the

15 selected tiles has 7 neighbours. Thus 28.94% of the mis-classi�cations were a neighbour

which make up only 19.44% of the possible false tiles.

Table 13 and 14 compare our results with the best results from Bayliss (2003). In Bayliss

(2003) it was only possible to select between �ve objects. Both our systems allow a selection

of one from 36 even though the Object Flash paradigm only visibly shows 15 objects. Because

of this our system achieves lower selection rates per minute as there are more objects to be

�ashed. We calculated bit rates for our system by taking the log2 of the number of possible

targets and multiplying this number by the average selection accuracy. The bit rates achieved

are also compared with the online bit rate achieved in Serby et al. (2005) which uses a Farwell

and Donchin (1988) type 2D speller. Looking at the mean bit rate achieved Object Flash

fares worse than the best result from Bayliss (2003) while Tiles achieves a higher bit rate.

All results are lower than the ones achieved in Serby et al. (2005). We think that the bit-rate

could be improved if more �ashes per object were used as the percentage of objects correctly

selected was quite low for many participants.

We also analysed the errors in Object Flash by splitting them into two categories: se-
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Bayliss Object Flash Tiles

number of goals/minute 3.16 1.21 1.58
variance 1.15 .76 .68

Table 13: Number of objects successfully selected per minute compared with the best result
from Bayliss (2003)

Bayliss Object Flash Tiles Serby et al.

bit rate/minute 7.34 4.73 8.17 15.3

Table 14: Mean bit rate calculated using the number of objects successfully selected per
minute compared with the online results achieved in Bayliss (2003) and Serby et al. (2005)
which used a Farwell and Donchin (1988) type speller

lecting another visible object and selecting an object that is not in the scene (as only 15

objects are in the scene while the signal processing still runs with 36 objects - the rest being

�hidden objects�). In this case 28/53 were selecting another visible object. Thus 52.83% of

errors were made on 41.67% of the objects suggesting that there is an error bias caused by

the �ashing of other objects in the scene.

6 Discussion and Conclusion

Both the paradigms we presented, Object Flash and Tiles, have been shown to work in a

fully immersive environment.

Although the di�erences between the selection rates for di�erent objects were not sig-

ni�cant in the Object Flash paradigm, we strongly believe that objects in highly cluttered

areas are harder to select. This is based on three observations. First, our pre-trial actually

produced a signi�cant di�erence between the large penguin and the table. Second, Cinel

et al. (2004) supports the assumption that near-target stimuli worsen results as they trigger

a wave similar to the P300 wave. Third, in the analysis of errors in the Tiles paradigm,

neighbouring cells were incorrectly selected more often than expected if errors were assumed

to be randomly distributed. In addition to that 5 of the 7 subjects achieved lower selection

accuracies on the table than on either the penguin or the box, one subject selected all three
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objects completely successfully and only one subject scored better on the table. Thus it

seems quite likely that �ashes close to the target �ash distract the user and lead to higher

error rates. Based on this it is reasonable to assume that visually cluttered areas in Object

Flash will lead to more selection errors.

The size of the object being �ashed does not seem to create a real di�erence in selection

accuracy as both the big penguin and the much smaller box achieved similar classi�cation

accuracies.

In our system a certain amount of jitter arose because of the use of several network

connections to integrate the di�erent systems. Based on the volumes of data transferred,

most of the jitter is likely coming from the PC cluster-based rendering system. Unfortunately

the renderer system of the XVR package was not open source preventing us from investigating

it, but we suspect there may be some occasional frame-long delays in the cross-display

synchronisation.

We think that the biggest problem with the two paradigms in a CAVE�-like system is

caused by the latency and jitter inherent in the system. While we were able to correct for

latency in a certain way, correcting for jitter is much harder. We think that there might be

two possible ways of dealing with jitter. First, it would be possible to have a world clock

signal that is delivered to all computers in the system. Based on this world clock signal all

parts of the system then guarantee that events will happen in a predictable amount of time.

However, this approach necessitates extra hardware and quite possibly real-time operating

systems. Second, it would be imaginable to monitor jitter in real-time and feed this back

into the P300 analysis software. This could be achieved by �lming the CAVE�-like screens

and analyzing the jitter and taking the actual display timings into account when doing the

signal processing. Another possible factor in�uencing performance is the low brightness and

thus the low contrast of the immersive display. We do think this has been avoided through

the use of the high contrast stimuli.

A possible way of further improving the performance of the two paradigms would be to
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�ash multiple objects at the same time instead of only �ashing a single object/tile. We think

that using this, it might be possible to achieve higher accuracy than the corresponding single

�ash model, while still taking less time. This does not con�ict with the result in Guan et al.

(2004) as they used shorter duration �ashes in the single �ash model, which could also be

applied to the row/column model.

Comparing the Object Flash paradigm with the Tiles paradigm, it seems like the latter

is the better in highly cluttered environments to avoid the presence of too many �ashes

being too close together and thus negatively a�ecting performance. Of course, the actual

object selection is much simpler in Object Flash than in Tiles. To successfully select an

object in Tiles the user selects the tile the object can be seen in. However, there might be

multiple objects in the same cell and this also depends on the users head position. Taking

the users head position into account can be easily done in CAVE�-like environments through

the use of head-trackers which are already used to generate the correct perspective images.

Through this it would also be possible for the user to help disambiguate the display by

actively moving his head. In addition to that, dealing with multiple objects per cell could

be done in two ways. First, a zoom could be performed on the selected tile until it �lls the

whole screen. Then the user is allowed to select again - this time in a much �ner manner.

This can be repeated until there is only one object in the tile selected or until one object can

be classi�ed as the �dominant� object. A second option would be to display a smaller version

of Tiles at the position of the selected tile allowing sub-selection. This smaller version of

Tiles could feature fewer cells depending on how many di�erent objects the user can see in

the particular cell. This approach is limited though in that the cells might become too small

to select successfully.

In summary, both the paradigms presented demonstrate the feasibility of using a P300

BCI in an immersive scene. Whilst our current work has looked at fully immersive virtual

environments, we believe these paradigms could be transferred to other 1st person paradigms,

such as interaction with the real world through augmented reality displays, or projected

22



augmented reality.
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