
Planning Plausible Human Animation
with Environment-aware Motion Sampling

Je-Ren Chen and Anthony Steed

Department of Computer Science,
University College London

{J.Chen,A.Steed}@cs.ucl.ac.uk

Abstract. The creation of plausible human animation remains a peren-
nial problem in computer graphics. To construct long animations it is
common to stitch together a sequence of motions from a motion database.
Typically, this is done in two stages: planning a route and then sam-
pling motions from the database to follow that route. We introduce an
environment-aware motion sampling technique that combines the plan-
ning and sampling stages. Our observation is that in the traditional ap-
proach the route generated in the first stage over-constrains the motion
sampling so that it is relatively implausible that a human would follow
this animation. We combine the motion sampling and planning and show
that we can find shorter and more plausible animations.

Keywords: Computer animation, motion sampling, motion planning

1 Introduction

The creation of animations for virtual humans is an essential part of many com-
puter graphics-based productions. One important goal is to create animations
that looks plausible. By plausible we mean that the animation would be feasible
for a similarly-proportioned real human and it would be likely that a real human
would choose a similar motion in an analogous real-world situation. Motion cap-
ture can be used to create animations (motion clips), but it is difficult to capture
all the necessary animations for a production such as a video game. Thus, the
common practise is to build a database of motion clips and then construct longer
animations from these shorter clips.

To construct an animation from a motion database, a query to the database
must be formulated. The query is formulated as a set of constraints such as start-
ing position, end position, specific animations to play at certain points, waypoints
to travel through, etc. It is common that the query is under-constrained in that
there may be many sequences of clips that achieve the goal. (e.g., “walk from
the door to the chair avoiding the table”). Given that we can find a set of can-
didate solutions that meet the constraints, we select between these by typically
choosing the one with the shortest total path length, assuming this is the most
plausible.

2 Environment-aware Motion Sampling

One way to search the motion database is to exhaustively search all possible
sequences of clips, but this works only for short sequences. A typical situation
involving longer sequences is when the character needs to navigate through the
environment. A common strategy in this situation is to decouple the query into
a path-finding stage and a path-following stage. The first stage searches for a
path, i.e. a 2-D or 3-D curve, that travels through the free space between obsta-
cles and reaches the goal. The second stage queries the motion database to find
a sequence of clips that follows this curve. We can then ask two questions: can
we generate an animation that follows the curve? Will the resulting animation
be plausible? Our first observation is that in order to search for a path, one must
make a conservative assumption about how far to stay away from the obstacle.
We might thus inadvertently exclude some animations from consideration be-
cause an individual motion clip might be able to pass the obstacle more closely.
Our second observation is that once a path is generated, we need to approximate
it by motion clips. In doing this approximation we might need to select clips that
would not be plausible from a high-level view of what sequence of motions a real
human would take. Our belief is that both of these problems result from the
decoupling of the path-finding stage from the path-following stage.

We propose an environment-aware motion sampler which allows us to gener-
ate plausible virtual human animations that navigate through an environment
with obstacles. We propose to couple the path-finding and path-following stages
in a search of a motion database. In Section 2 we discuss related work. In Sec-
tion 3 we present an overview of our approach, and the new environment-aware
motion sampling (EMS) algorithm. In Section 4 we explain how path-following
can be achieved with explicit constraints. The main contribution is in Section
5 where we show how obstacle avoidance can be introduced as an implicit con-
straint. Section 6 then shows how we can find animations where the previous
standard technique cannot in typical navigation problems.

2 Related Work

The purpose of motion planning is to generate motions which moves a subject
from one location to another without any collisions with least effort. Commonly
this is simplified as finding a shortest collision-free path to the goal. One way
of finding such a path is to approximate the space by decomposing the free
space into connected proximities [4] or using a grid to store discretized free
space information [2]. In 2-D or 3-D it is efficient enough to search for paths
connecting free cells in approximate representations, but these are inefficient
when the subject has many DOFs, such as a human-like character. Thus, they
are suitable for generating ground paths at a coarser level which we then can
use as constraints to query a motion database to follow it.

Another approach is to take random samples of the free space and summarise
it as roadmaps [12]. For example, Choi et al. [3] approximate footprints on the a
roadmap and re-target biped motions on a given route, but they only evaluate the
collision of the footprints rather than entire body motions. It is also possible to

Environment-aware Motion Sampling 3

represent motions as sampled points with tree structures for later determination.
For example, precomputed search trees [7] have been applied with motion data
by plotting them into point clouds so they are intersected with obstacles to
eliminate invalid branches. Our research shares a similar goal with theirs, i.e.,
planning animation with collision detection using motion data. However, we
estimate collision errors as a soft constraint instead of using the binary decision
of accepting or rejecting a solution.

Mizuguchi et al., [11], describe how motions are authored and constructed
for character motion control in game production. Motions representing in-game
actions and the transitions between them are hand-edited by animators such
that motions are blended together to control the character at run-time. To reduce
the burden of manual input, many researchers have investigated different ways of
detecting and querying transitions. The term “motion graphs”([6][1][8]) are used
to refer various techniques that detect motion transitions by making use of frame
distance matrices. To generate an animation that satisfies user-specified goals,
a motion graph defines constraints, such as desired locations and orientations,
and a cost function to search for an optimal edge sequence that minimises the
cost. Hence, navigation animation is typically done by identifying all necessary
constraints along a feasible route obtained from a preceeding planning stage.

One way of searching for a solution that navigates through obstacles is to
enumerate the states in the control-parameter space and connect these states
with corresponding paths of the motion graph. Reitsma and Pollard [13] embed
a motion graph into a 4-D grid space that consists of the ground position, ori-
entation, and the motion type such that they are able to evaluate the motion
graph coverage in the scene and the motion path quality of the search. We also
measure the cost of an animation by calculating the ratio of the actual travel
distance to an expected path length. Safonova and Hodgins [14] also apply a an
embedded motion graph but they allow the interpolation between two source
motions rather than a single motion type in each state so that they are able to
improve the optimality of the animation. However, the main drawback of these
methods is that they need to re-embed the motion graph whenever the scene is
changed.

Another way of finding a motion graph solution is using randomised search.
Arikan and Forsyth [1] applied a Monte Carlo simulation on motion graph search
by generating an initial random graph walk and repeatedly re-enumerating sub-
optimal edges with alternatives towards satisfying the constraints. We adapt
their method to our motion query in this research. Whilst their method works
with multiple constraints that follows a curve, we incorporate collision errors as
implicit costs in the optimisation.

Reinforcement learnining techniques are also applied to generate navigation
animation ([15] [9] [10]). They do so by incorporating the obstacle configurations
in the parameter space so that they can pre-compute the costs for each condition
and select the best one to avoid the obstacle at run-time. However, due to limited
dimensionality of the parameter space, they can only allow very few numbers
of obstacle configurations to be considered. Our implicit cost function estimates

4 Environment-aware Motion Sampling

User Requests

Goals

Obstacles

User Requests

Explicit constraints

Obstacles

Path Finding

Path Following

Potential

fields

Edge

sequences

Paths

Animation

PFF

Env-aware

Motion

Sampling

Implicit

constraints

Edge

sequences
Animation

EMS

Fig. 1. The approach of decoupled search (left) and joint optimisation (right).

the collision error directly in the work space and can be scaled with any number
of obstacles.

3 Overview

We wish to generate plausible full-body human motions for navigating a virtual
environment. One typical way is to query a motion database, such as a motion
graph (see Section 2), by specifying as many waypoints as needed to avoid the
obstacles until we reach the goal. The waypoints are obtained by some path
finding technique in a preceding stage. We propose to formulate navigation an-
imation generation as a planning problem by jointly optimising both explicit
(user-specified goals) and implicit (environmental obstacles) constraints. The
aim of the optimisation is to sample a sequence of clips that minimises the
explicit and implicit costs.

In this paper, we compare our joint optimisation method, called environment-
aware motion sampling (EMS), with a typical decoupled search approach, called
path finding and following (PFF). Figure 1 compares the two approaches. Both
approaches have the same inputs: the user-requested constraints such as loca-
tions, orientations, and desired actions; the virtual environment; and a motion
graph. The obstacles in the scene are primitive geometries, and the motion graph
is built by connecting similar poses between each motion sequence in the loco-
motion library. The EMS and PFF methods both rely on a motion graph to
query a motion database. They also both employ potential-field path finding [2]
to select a route through the environment. While PFF applies potential fields to
generate a collision-free path and searches for animation that follows this path,
EMS synthesises a full-body collision-free animation directly using the collision
errors within the cost optimisation.

Motion Graphs. As discussed in Section 2, a motion graph is a database
technique that can generate a sequence of motions from a library. To query

Environment-aware Motion Sampling 5

the database, we specify certain constraints and search for a solution that min-
imise a cost function. We implement the Monte Carlo simulation-based motion
graph search method (MCMG) [1]. This method begins a search with a random
edge sequence. In each iteration, MCMG proposes the best few candidates by
scoring their costs and optimises these best-so-far solutions by modifying their
sub-optimal edges with their alternatives. To search the graph more efficiently,
the edges are arranged as tree structures such that edge modifications, or mu-
tations, only enumerate the root-level edges of the trees (hop mutations), while
finer tuning of the transitions can still be made by replacing an edge with its
children (demote mutations). Once an edge sequence is obtained, the animation
is derived by stitching together the corresponding motion clips. Please refer to
the original work for technical details [1]. This paper will focus on how we design
the explicit and implicit constraints and the cost functions in order to facilitate
the search algorithm for character navigation. The algorithm we describe would
be applicable to types of query other than navigation.

Potential-field Path Finding. For path finding, we use potential fields [2]
since it is easy to implement and is considered to be effective in low-dimensional
path finding problems. The potential field method finds a path by discretising the
workspace into a grid of cells and propagating a gradient of ascending distances
in the free space from the goal point. The cells in this field, the potentials, are
then used as a heuristic to search for a connected chain of cells from a given initial
location by moving to a lower potential neighbour cell. The chain is converted
into a curve (a poly-line) by connecting the centroids of consecutive cells. The
curve is further straightened if any segments does not collide with an obstacle.
Such property maintains the shortest path length for this route. Although we
can obtain a short and collision-free path by using potential fields, we cannot
query an animation to follow this path as it does not consider the volume of
the character. A common workaround is to sample the animation along the
curve with a safety distance to an obstacle. To achieve this in PFF, we estimate
a maximum bounding cylinder from the library, and use its radius to thicken
obstacles when building potential fields. We will describe how potential fields
are applied to obtain the path to be followed for PFF in Section 4 and how it
is used to estimate the minimal travel distance for EMS in Section 5. Note that
the potential field path finding method used in this research can be replaced by
other 2-D path finding techniques.

Decoupled Search versus Joint Optimisation. An animation query begins
with a pair of explicit constraints: initial location, orientation and action (i.e.,
a specific motion clip), and goal location, orientation and action. In decoupled
search, PFF first finds a poly-line that connects initial and goal locations in the
path finding stage. During path following, intermediate constraints are densely
planted along this path as waypoints. PFF then uses an objective function to
search for a solution that strictly travels through these exact waypoints within
a certain radius by minimising CostPFF = Errorsmooth +ErrorpenalisedExplicit,

6 Environment-aware Motion Sampling

where ErrorpenalisedExplicit is the total deviation between the solution and way-
points (described in Section 4). The term Errorsmooth maintains the smooth-
ness of the transitions and is the sum of the cost of a transition estimated
by the dissimilarity between poses obtained during motion graph construction
([1]). For joint optimisation, EMS also performs path finding but does not en-
force path following. Instead, EMS only considers the vertices of the poly-line
as approximate waypoints to sample towards a preferable short route and to
estimate the expected travel distance. Thus, EMS searches for an edge sequence
that travels close to these sparse waypoints and avoid obstacles by optimising
CostEMS = Errorsmooth + Errorexplicit + Errorimplicit. We will describe how
to estimate Errorimplicit in Section 5.

4 Animation Control using Explicit Constraints

We first consider sampling motions with explicit user specifications but without
the implicit constraints of collision avoidance. We begin by considering only two
explicit constraints. We then describe how to sample motions with multiple con-
straints, and how to partially enforce constraints to allow sampling an animation
along a series of constraints such as those implied by the curve generated by the
PFF method.

Explicit Constraints. To animate a character moving from one spot to an-
other, we define an explicit constraint c to be a set of triple such that c =
(act, loc, ori) to specify required action, location, and orientation constraints.
Actions are labelled poses (frames) to specify a motion to be happened at a par-
ticular point. Actions are hard constraints and are obeyed by searching among
the edge sequences that contain these required poses. A location constraint spec-
ifies the required position of the character’s centre of mass projected on the
ground (x-z plane). The orientation constraint specifies the required angle be-
tween the character’s facing direction (obtained by projecting the local z-axis
of the body on the ground) and the world z-axis. The location and orientation
constraints are used to estimate the deviation of sampled edge sequences in the
explicit objective function.

Explicit Objective Function. Let Ω = (e1, ..., en) be a proposed edge se-
quence sampled from the motion graph with a pair of initial and goal condition
as Cs,t = (cs, ct) and let f be a frame of the animation derived from Ω. We
define functions locate(f) and orient(f) to estimate the accumulated location
and orientation of any f . Since we require the animation to be derived from the
initial constraint cs, the error between Ω and Cs,t is estimated by calculating
the positional and rotational deviations between the end frame ft and the goal
constraint ct as

deviate(Ω, ct) = wl · (|locate(ft)− loct|)2 + wo · ((orient(ft)− orit))2, (1)

Environment-aware Motion Sampling 7

where weights wl and wo are chosen such that the error yielded by 30cm in
location is equivelent to the error of 10◦ in orientation, as suggested in [1].

Multiple and Partial Explicit Constraints. We may also wish to gener-
ate an animation that satisfies more than two constraints. We insert multiple
constraints between cs and ct and accumulate the deviations raised at each con-
straint with Equation 1. However, to calculate the deviation, we need to deter-
mine the corresponding frame for the action of each constraint since there might
exist more than one frame that satisfy the action constraint. Let C = (c1, ..., cn)
be a series of explicit constraints. We find fi for each ci by selecting frames in
Ω that contain acti and choose the one with the least deviation by

fi = arg min
F

deviate(Ω, ci), (2)

where F is the set of frames that are of action type acti found in the anima-
tion that corresponds Ω. We then chose the deviation of fi to be the the error
increased by ci.

Occasionally, we only require the character to travel through certain locations
regardless of their actions or orientations. We can partially enforce an explicit
constraint by discarding its action constraint and orientation deviation in Equa-
tion 1. Thus, similar to Equation , for each partial explicit constraint, we find
an fi among all frames that minimises deviate(Ω, ci) regardless the orientation.
Finally, the total explicit error is

explicit(Ω,C) =

n∑
1

deviate(Ω, ci). (3)

Path Following using Explicit Constraints. Once we can sample motions
with multiple and partial explicit constraints, we can generate an animation that
follows a curve with the motion graph. We plant intermediate partial constraints
as waypoints along the curve obtained from the path-finding stage with step size
dstep. However, as mentioned in Section 3, we cannot simply find and follow
a path regardless of the volume of the body. Thus, we estimate a minimum
bounding cylinder from the library and apply the radius rbody of the cylinder to
expand the obstacles in the potential field. To ensure we sample the animation
moving only inside this corridor, we penalise those frames that are far away from
the intermediate partial constraints by adding

penalise(fk, ci) = (
|locate(fk)− loci|

rbody
)pfollow , (4)

where pfollow >= 1 increases the penalty. Finally, we are able to generate an
animation to follow the path by using explicit(Ω,C) for ErrorpenalisedExplicit

for CostPFF in Section 3.

8 Environment-aware Motion Sampling

5 Collision Avoidance with Implicit Constraints

We now present our new approach where we introduce two implicit constraints to
the search: the environmental obstacles and minimal travel distance constraints.

Implicit Constraints. We define two types of implicit constraints: one that
enforces obstacle avoidance and one that selects minimal travel distance. We de-
sign the obstacle constraints using three parametric primitives (spheres, cylinders
and cubes) so that collision detection can use efficient distance measurements.
Scenes can be approximated by sets of transformed primitives. For each frame,
we collide a point cloud of the joint positions with the obstacles to estimate the
collision error. The minimal travel distance constraint maintains a minimal cost
from taking longer alternative motions to avoid obstacles. In reality, humans can
move along straight lines between two locations. However, this is often not the
case when sampling an animation as we may not be able to find exact motions
in the library. We suggest linear distances between goals as an expected travel
distance and we wish to sample motions that move along these straight lines
as close as possible. Hence, the minimal travel distance constraint is an error
computed as the ratio of the required travel distance to the expected travel
distance.

Implicit Objective Function. Let O = (o1, ..., om) be a set of obstacles, we
define a boolean function isInside(oi, p) to determine whether a point p is inside
an obstacle oi. The collision error between the obstacle set O and each frame is
estimated by

errcollide(O, f) =

m∑
i=1

n∑
j=i

isInside(oi, jointPos(f, j))

n
, (5)

where m and n are obstacle and joint numbers and jointPos(f, j) is a function
to obtain the world position of a joint at frame f . In practise, we perform a
coarse bounding-box collision between obstacles and the point cloud to select
a smaller set of O such that we do not collide with every single obstacle. The
minimal travel distance error is the ratio of the required travel distance to the
expected travel distance:

errtravel(Ω,C,O) =
arclength(Ω) + |locate(fm)− locn|

arclength((c1, ..., cn))
. (6)

where arclength(Ω) is the travelled distance derived from the animation and
arclength((c1, ..., cn)) is the total length of the poly-line formed by the explicit
constraints from initial to final goal. The distance between locate(fm) and locn
is a penalty applied to solutions that are short but are not close to the final goal.
Finally, the total cost of the implicit errors is calculated as:

implicit(Ω,C,O) = (

n∑
k=1

errcollide(O, fk))2+(wd ·(errtravel(Ω,C,O)−1))2, (7)

Environment-aware Motion Sampling 9

where n is the number of frames of Ω and wd is chosen by experiment given that
wl and wo in the explicit errors (see Equation 1) are fixed.

Scene Navigation via Joint Optimisation. By introducing implicit(Ω,C,O)
to CostEMS described in Section 3, we are able to estimate the cost of a sampled
solution. For joint optimisation, the EMS algorithm also applies potential path
finding to obtain a path from the explicit constraints in the initialisation stage.
Unlike path-finding in PFF, we do not expand obstacles since we require the
path to be the shortest possible: the path arclength will be used to estimate the
expected travel distance in Equation 6. Also, instead of strictly following the
path, we only insert the vertices of this path as intermediate partial constraints
to converge to a solution with a shorter route.

6 Implementation and Results

We have implemented both methods using the C++ programming language
and integrated them as a plug-in for the Maya animation software. We use the
potential-field path finding technique to generate a path from the initial and goal
constraints specified by the user. We found dcell = 5cm to be a reasonable size for
cells in the potential field to generate good quality paths in our experiments. For
both PFF and EMS, we generate an initial random edge sequence that connects
two poses of the required actions in the motion graph. During optimisation, we
choose the best three candidates in each iteration. We only search in the root-
level edges, i.e., the hop mutations, as we favour search speed over smoothness of
the animation, although we did not find any noticeable artefacts in our results.
We also maintain a hash table of explored solutions to avoid simulating the
same edge sequence mutated from different candidates. The search terminates
when no better mutation can be found and the optimal solution is the one that
has the minimal cost among local minima. For path-following in PFF, we found
dstep = 30cm and powfollow = 2 to be a reasonable step size and penalty to
obtain an animation that follows the poly-line closely.

We have designed two-corner turning and object-cluttered space scenes to
evaluate the results of both methods. We performed our experiments on an
Intel P9700 2.8 GHz processor on a 64-bit Windows laptop machine with 6
GB memory. For our motion library, we chose ten locomotions from the CMU
Motion Capture Database [5] (details available on first author’s website). We
re-sampled motions to 30 frame-per-second to reduce the size of the library. Our
library contains 1091 frames and our motion graph has 9066 root-level edges.
The quality of the animation is measured by the transition numbers and costs
to determine its smoothness, the location and orientation errors to the goal
constraint, and the ground trajectory for travelled distance and required frames.
We also compare the required motion-graph search time of both methods.

Two-corner Turning. In this experiment, we design a corridor scene that has
two consecutive turns, as seen in Figure 2. The initial and goal constraints are

10 Environment-aware Motion Sampling

Average Optimal

PFF EMS Diff PFF EMS Diff

of transitions 12.50 11.30 1.20 12 9 3

Transition costs 3.74 3.88 -0.14 3.97 3.23 0.74

of frames 338.40 327.60 10.80 335 297 38

Location(cm) 10.10 11.16 -1.06 9.74 28.41 -18.67

Orientation(deg) 2.03 7.2 -5.17 0.05 0.16 -0.11

Travel dist.(cm) 1058.36 966.41 91.95 1075.70 907.89 167.81

Search time(sec) 106.20 39.03 67.17 70.43 21.34 49.09
Table 1. Performance comparison between PFF and EMS in “Two-corner turning”.
Column Average is the mean of 10 trials while Optimal is the solution that has the
minimal cost among 10 trials. Column Diff is calculated by subtracting the result of
EMS from PFF in order to show the improvements.

Fig. 2. Two-corner turning using PFF (top) and EMS (bottom).

placed at both ends of the corridor. Since the initial random edge sequence has an
impact on the graph search time, we perform ten trials of searches. For each trial,
we randomly choose an initial edge sequence for both methods and average their
results, as shown in Table 1. For both methods, we select an optimal solution that
has the lowest cost among ten trials and compare them in the Optimal column.
In general, we found EMS can generate animation that has fewer transitions
and shorter travel distance with less search time in both Average and Optimal
columns. Although PFF seems to have smaller location and orientation errors,
the difference between two methods is actually very small (within 20cm and 6◦).
Visual improvements can also be seen from the animation in Figure 2, where the
result from EMS turns at the corners smoothly while PFF always makes two
sharp turns in order to strictly follow the path.

Object-cluttered Space. In the second experiment, we evaluate the perfor-
mance of both methods when navigating through multiple random obstacles.
First, we perform a single trial of motion search for both methods in a grid of

Environment-aware Motion Sampling 11

Average Optimal Grid

PFF EMS Diff PFF EMS Diff PFF EMS Diff

of Transitions 22.7 11.4 11.3 18 5 13 27 6 21

Transition costs 6.5 3.41 3.08 5.63 1.60 4.03 5.5 1.28 4.22

of frames 490.1 275 215.1 394 230 164 287 230 57

Location(cm) 32.88 30.13 2.75 20.59 8.86 11.72 24.45 11.67 12.78

Orientation(deg) 12.99 5.82 7.17 0.48 0.05 0.44 0.93 2.86 -1.93

Travel dist.(cm) 1481.69 831.87 649.82 1211.80 810.11 401.69 854.44 807.23 47.21

Search time(sec) 740.82 38.13 702.68 686.94 3.85 683.09 332.3 3.86 328.44
Table 2. Performance comparison between PFF and EMS in “Object-cluttered space”.
Column Grid is the result before the boxes are randomly transformed.

Fig. 3. Search in a grid of boxes. Both
methods generate animations that travel
via a similar route.

Fig. 4. While PFF can only find an anima-
tion travelling through larger gaps, EMS is
able to find motions moving around obsta-
cles closely in the object-cluttered scene.

4× 3 boxes (40× 40× 40cm) with a distance of 4× rbody between each box (see
Figure 3). While PFF requires more transitions to stay inside the corridor, the
results of both methods are very similar. We then randomly change the size,
orientation, and location of each box for ten trials, and for each random config-
uration, we compare the the average and optimal results generated from both
methods, as shown in Table 2. Note that although this scene is more complicated
than the previous, the search time of EMS does not increase substantially. On
the contrary, PFF requires much more search time to sample transitions as there
are many turns in the paths. While PFF can only navigate through obstacles
with an in-between distance larger than 2 × rbody, EMS is able to generate an-
imations that travel through narrower gaps. Finally, unlike PFF, EMS is not
over-constrained by the intermediate constraints even if it fails to find a solution
that reaches all waypoints. Figure 4 shows an example where EMS manages to
find alternative motions that reach the goal and the result is still a short route.
We also include more results of our two experiments in the supplementary video.

12 Environment-aware Motion Sampling

7 Conclusion

In this paper, we proposed an environment-aware motion sampling method to
generate plausible human animation in a non-trivial virtual environment. The
coupling of collision avoidance and motion-graph queries allows us to sample
motions that reach the goals and avoid the obstacles in a more human-like way.
One key reason for this is that we don’t have to conservatively plan to avoid
obstacles. The results show that although it is possible to apply a path finding
technique to obtain explicit constraints to query a motion graph, the combination
of planning and querying allows us to find more feasible solutions with fewer
transitions and shorter animations to achieve the same goal.

Although we demonstrate our approach for navigation animations, the tech-
nique could be extended to other situations that involve planning motion in
cluttered environments. For example, complex manipulations of objects that in-
volve reaching into cluttered space, or planning motions that involve collision
with only part of the body such as ducking or raising a hand to avoid collision
with street furniture. The performance of our methode could also be improved by
scoring the solutions in multiple processes or on the GPU since each simulation
is independent.

References

1. O. Arikan and D. A. Forsyth. Interactive motion generation from examples. ACM
Trans. Graph., 21:483–490, July 2002.

2. J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field tech-
niques for robot path planning. pages 1012 –1017 vol.2, jun. 1991.

3. M. G. Choi, J. Lee, and S. Y. Shin. Planning biped locomotion using motion
capture data and probabilistic roadmaps. ACM Trans. Graph., 22(2):182–203,
2003.

4. H. Choset and J. Burdick. Sensor-based exploration: The hierarchical generalized
voronoi graph, 2000.

5. CMU Graphics Lab. Carnegie mellon university motion capture database, 2009.
[Online; announced April 15 2009].

6. L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics and interactive tech-
niques, pages 473–482, New York, NY, USA, 2002. ACM.

7. M. Lau and J. J. Kuffner. Precomputed search trees: planning for interac-
tive goal-driven animation. In SCA ’06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 299–308, Aire-
la-Ville, Switzerland, Switzerland, 2006. Eurographics Association.

8. J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interac-
tive control of avatars animated with human motion data. ACM Trans. Graph.,
21(3):491–500, 2002.

9. Y. Lee, S. J. Lee, and Z. Popović. Compact character controllers. ACM Trans.
Graph., 28:169:1–169:8, December 2009.

10. W.-Y. Lo and M. Zwicker. Real-time planning for parameterized human motion. In
Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer

Environment-aware Motion Sampling 13

Animation, SCA ’08, pages 29–38, Aire-la-Ville, Switzerland, Switzerland, 2008.
Eurographics Association.

11. M. Mizuguchi, J. Buchanan, and T. Calvert. Data driven motion transitions for
interactive games, 2001.

12. D. Nieuwenhuisen, A. Kamphuis, and M. H. Overmars. High quality navigation in
computer games. Sci. Comput. Program., 67:91–104, June 2007.

13. P. S. A. Reitsma and N. S. Pollard. Evaluating motion graphs for character ani-
mation. ACM Trans. Graph., 26(4):18, 2007.

14. A. Safonova and J. K. Hodgins. Construction and optimal search of interpolated
motion graphs. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 106, New
York, NY, USA, 2007. ACM.

15. A. Treuille, Y. Lee, and Z. Popović. Near-optimal character animation with con-
tinuous control. ACM Trans. Graph., 26, July 2007.

